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THE GENERAL PHILOSOPHY of stochastic modeling 
was discussed in the first part of this series on 

stochastic modeling of chemical process systems. 
Moreover, a particular class of stochastic models was 
outlined, based on the master equation. In Part 2, the 
master equation will be discussed and an approximate 
solution technique known as the System Size Expan­
sion will be presented. The formal apparatus de­
veloped here will be utilized in the third part of the 
series to model a chemically-reacting system. 

In developing stochastic models based on the mas­
ter equation, it is assumed: (1) that a population of 
discrete entities exists and evolves through interac­
tion between the entities; (2) that the entities possess 
certain characteristics such as size, temperature, and 
chemical makeup, which distinguish groups of entities 
from other groups; and (3) that the entities exist in 
Euclidian space of zero or higher order. A stochastic 
model for this population can be derived based on the 
concepts of probability theory. The resultant expres­
sion for the joint probability of the random variables 
designating the distinct groups of entities in the pop­
ulation is known as the master equation [1,2]. The 
master equation arises directly from the assumption 
that the interactions between entities possess the 
Markov property; changes in the system depend solely 
on the present state of the population and not on its 
past states. 

In what follows, the random variable N denotes 
the number of entities in a specific group in the popu­
lation. Subscript j signifies the number of entities pos­
sessing feature j; each feature is assigned a positive 
integer. Similarly, multiple subscripts will designate 
distinct groups of characteristics, e.g., 

{Ni,fj E {1,2, 3, ... }, i E {-oo, ... ,-2,-1,0, 1,2, ... ,+oo}} 

can denote the number of entities with feature j, lo­
cated at point i on a discretized number line. The joint 
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probability of the random variables {N} will be de­
noted as P({n},t) or simply P, when {{n}: n E 

(0,1,2,3, ... )}, i .e., when the state space of N consists 
of the positive integers. However, for convenience of 
mathematical manipulation it will be desirable to ap­
proximate n as a positive real number i.e ., {{n}: n E 

(0, + oo)}, when performing the System Size Expansion 
introduced in the following section; the joint probabil­
ity p becomes a joint probability density function de­
noted as p({n},t), or simply p. In both expressions, t 
refers to time since the model describes a process 
evolving in time. P({n},t) is interpreted as 

P({N1 = n1,N2 = n2, .. ,}, t) 

which is the joint probability that the random variable 
N 1 has a value of n1, the random variable N2 a value 
of n2, and so on at time t. It is also necessary to define 
a conditional probability, P({n}1, t 1 I {n}0,t0) , which is 
the probability that the random variable N 1 has a 
value of n11 , the random variable N2 a value of n21, 

and so on at time t 1, given that the random variable 
N 1 has a value of n10, and so on at time t 0. 

THE MASTER EQUATION 

Letting t0 =t and t 1 =t+-r, where -r is a small time 
interval tending toward zero, the conditional probabil­
ity P({nh, t +-r I {n}0, t) can be expanded in a Taylor 
series 

P{{n}i, t+'tl {n }0, t) =[l-'t I, w1({n}0,{n})]sk({n}1 -{n }0) 
{n} 

+ 'tWt( { n }0, {n}1) + 0 ( 't2) 
(1) 

The quantity Wt<{n}0,{nh) is the transition probability 
per unit time that the population changes from state 
{n}0 to state {nh in the time interval between t and 
t+-r. The quantity 
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A stochastic model for this population can be derived . ... The resultant expression for the joint probability of 
the random variables designating the distinct groups of entities in the population is known 

as the master equation ... [which] arises directly from the assumption that the 
interactions between entities possess the Markov property ... 

'tL, Wt({n}0 ,{n})-'tWt({n}0 ,{n}0 ) 

{n} 

is the total probability of transition from state {n}0 to 
any other state during the time interval between t 
and t+T. Thus, T Wt({n}0,{nh) is the probability of a 
transition from {n}0 to {nh during the time interval 
between t and t + T, and 

[
1- 't L, Wt({n}0 ,{n})]ok({n}1 - { n}0 ) + 'tWt({n}0 ,{n}0 ) 

{n} 

is the probability that no transitions occur during the 
time interval between t and t + T. 

Assuming that the states of the population possess 
the Markov property, P({nh,t+T) can be expressed as 

P({n}i,tH)= L, P({n}l't+'tl{n}0 ,t)P({n}0 ,t) 
{n}o 

(2) 

Taking the limit of this expression as T • 0 yields the 
master equation: 

dP({n}l't) = L, Wt({n},{n}i)P{{n},t) (3) 

dt {n} 

where Wt({nh,{nh) is defined as 

Wt({n}i,{n}i) = - L, wt({n}i,{n}) 
{n} 

{n],{n}i 

MASTER EQUATION EXPANSION 

(4) 

The master equation, as given in Eq. (3), is in the 
form of an ordinary differential equation. Since P({n},t) 
appears only to the first power, the equation is linear. 
However, if the state space is large, Eq. (3) is a large 
system of coupled equations-one for each possible 
state. For example, for the set of two random vari­
ables 

{ { n}; = {n1,n2 h: nj E {0, l},i E {1,2, 3, 4},j E {1,2}} 

there are four possible events 

{n}1 = {0,0},{n}2 = {1,0},{n}3 = {0,1},{n}4 = {1,1} 

Note that the state space of either of the two random 
variables, N1 and N2, consists of two events, i.e., {0,1}. 
The resultant system of differential equations could 
comprise four coupled equations. In general, if k(j) is 
the number of events in the state space of random 
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variable N, then the number of coupled differential 
equations could be equal to 

Tik(j) 
j 

Even if j is equal to 1, this could still result in a very 
large system of equations. For example, if the state 
space of random variable 1 consists of all the integers 
[k(l) equal to + 00 ], the number of equations will be 
infinite. It is necessary, therefore, to develop an ap­
proximation procedure for the solution of such equa­
tions. 

The use of the System Size Expansion is predi­
cated upon the fact that often, for a system involving 
interactions between entities in the population, the 
magnitude of the change in the number of entities in 
the system following a transition is an extensive vari­
able, e.g., the number of molecules, but the depen­
dence of the rate of transition on the number of en­
tities is expressed as an intensive variable, i.e., the 
concentration of molecules. As an example, consider 
a system consisting of two populations A and B, un­
dergoing second order interactions between them in a 
volume n. Suppose that q members are in population 
A and r members are in population B, and that a tran­
sition takes place when a member of population A 
meets a member of population B. In most cases, the 
rate of such a transition will not only be proportional 
to q times r, but also inversely proportional to the 
volume squared. This follows intuitively from the 
image of the entities moving freely in the volume n. 
Decreasing n will increase the number of collisions 
between members of populations A and B. The rate 
of transition is thus dependent on the density or con­
centration of entities in the system. 

Under the assumption that the System Size Ex­
pansion is valid, the term representing the rate of 
transition Wt({n},{nh) in the master equation, Eq. (3), 
is first rewritten as Wt({n};{nh - {n}), where {nh - {n} 
is the magnitude of the change in the random variables 
{N} during a transition. Letting m = {n}1 - {n}, the 
rate of transition can be expressed as Wt({n};{~}). It 
can further be rewritten as 

Wt({n};{~})=.n'Pt({~};{~}) (5) 

if it is assumed to be a homogeneous function of the 
random variable. The rate of transition is now a func­
tion of the intensive random variables {N/0}, and the 
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System Size Expansion can be introduced. 
Making a change of variables and introducing the 

new random variables {Z} and the deterministic vari­
ables {<!>} such that 

1 

{N} = n{$(t)}+ n2 {Z} (6) 

the rate of transition is rewritten as 

w,({ n}, {<}). n'I',( {w)+ n•, ),1,i] (7) 

It will be seen later that the deterministic variables 
{<!>} correspond to the macroscopic behavior of the sys­
tem. The master equation, Eq. (3), is then of the form 

dP[ { $(t) + n- ½{,t l 
dt 

= if1°q,{{$(t)+n- ½+m)P[{$(t)+n- ½z},t) cs) 

To proceed with the expansion, it is useful to define 
the first and second jump moments, Ai and Bi,j, re­
spectively, and Ai and Bi,j as follows: 

Ai({n})= L,(nn -ni)Wt{{n},{n}i) 

(10) 

and 

Bi,i({n})= L,L,(nil -nd{ni1 -ni)Wt{{n},{n}i) 
nu Dj! 

= L,L,Si Si Wt{{n};si,si) 
~l ~j 

The expression Wi({n};~i~j) denotes the dependence of 
the rate of transition on both ni and nj. If no such 
dependency exists, either ~i or ~j is identically zero. 
The master equation, Eq. (8), can then be expanded 
in powers of n to yield 
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op({z},t) n½I,~ op({z},t) 
at i dt ozi 

= -n½~ ~i [ A; ({$(t)+ri ½ z })P({z}, t)l 

+½ ~t az~~i [ Bi,{ {$(t)+ri ½ z} )P({z},t)]+o( ri ½) 

(13) 

where p({z},t) is the probability density function of 
the new random variables {Z}, and 0(O-m) represents 
terms of order n-112 and smaller. 

To proceed further, the expansions of Ai and Bi,j 
in powers of n must be performed; they yield 

x{ { $(t)+ n-t}) = Ai ({ $(t)} )+n-½tzi Aii{$(t)})+ o (n-1
) 

(14) 

••. , ( {;(,)•n-½, l l-ii,, ,1,(,)})• o( n½ l (15) 

These expressions define the expansion coefficients 
Ai> Ai,j, and Bi,j· The expanded master equation, Eq. 
(13), thus becomes 

op .!. "" d$· op .!. "" - op """" - o [ ] --Q2 £.J-· -=-Q2 £.JAi-- £.J£.JAi,j- ZiP 
at i dt azi i azi i j azi 

(16) 

The terms of order 0112 on both sides of this expression 
cancel if <l>i obeys 

(17) 

Letting n approach infinity (thermodynamic limit), 
the last term on the right-hand side of Eq. (16) van­
ishes, thereby yielding 

where Ai, Ai,j, and Bi,j are given by Eqs. (14) and 
(15). quations (17) and (18) are the expressions result­
ing from the System Size Expansion. 

Even in the form given by Eq. (18), the master 
equation for the system may still involve a large 
number of variables {Z}, since the number of random 
variables is equal to the number of distinct populations 
in the system, which may be large. Nevertheless, Eq. 
(18) is a linear Fokker-Planck equation whose solution 
yields a multivariate, normal distribution; the linear-
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ity is in reference to the coefficients Ai,j and Bi,j· In 
general, a Fokker-Planck equation is said to be linear 
if it can be written in the form of Eq. (18) and the 
coefficients do not depend on the random variables 
{Z}. Although the coefficients, A;,j and B;,j, are linear, 
they are time-dependent through the dependence on 
{<!>}, obeying the system of coupled, possibly non­
linear, differential equations given by Eq. (17). To 
solve the Fokker-Planck equation, Eq. (18), it is 
necessary to first solve Eq. (17) for{<!>}. 

Solving Eq. (17) for{<!>} can itself be a highly ardu­
ous task, especially if the equations are non-linear. 
Methods for solving the Fokker-Planck equations with 
the constant coefficient matrices, A;,j and Bi,j, are 
available, but the addition of a time-dependence 
quickly increases the complexity of the problem. Such 
difficulties can be circumvented in cases where a com­
plete expression for p({z},t) can be substituted by ex­
pressions for its moments in general, and for its 
means, <Z;>, and the cross-moments <ZiZj> in par­
ticular. This is accomplished by multiplying both sides 
of Eq. (18) by z; or z;zj, and integrating over all vari­
ables from - oo to + 00; this yields 

_!!.(Z ·)="' A- -(Z ·) dt 1 4,,>,ii (19) 

J 

and 

(20) 

These expressions give rise to the governing differen­
tial equation for the covariances of {Z} as 

.!!.cov[Z;,Zj] = I { A;,k Cov[zk,zj]+ Aj,k Cov[Zk,z;J}+B;,j 
dt k (21) 

Returning to the original random variables {N} and 
using their definitions in terms of{<!>} and {z}, the ex­
pressions for their means and covariances can be ob­
tained from Eqs. (19) and (21), respectively, as 

d d~- .!. d - .!. -
-{N•}=n-1 +n2 -(Z·)=nA-+n 2 "' A , -(Z·) (22) dt 1 dt dt 1 1 4,, >,J J 

J 
and 

! Cov[N;,Nj]= n ! Cov[Z;,Zj] 

= L, {A;,k Cov[Nk,Ni]+Aj,k Cov[N1<,N;J}+nB;,i 
(23) 

Note that Eq. (19) is identical to the linear equa­
tion resulting from linear stability analysis of Eq. (22). 
Consequently, the real parts of the eigenvalues of the 
coefficient matrix, A;,j, will be negative if the macro­
scopic behavior of the system is stable with - respect 
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to fluctuations. Since < Zi(O)> is equal to zero, 
< Z;(t)> will be zero as long as the system is macro­
scopically stable. When this is not the case, the Sys­
tem Size Expansion is no longer valid and must be 
replaced by an alternate technique. Macroscopically, 
such behavior may correspond to a bifurcation point 
where two or more solutions branch from the original 
stable state. Probabilistically, the density function for 
the system would then no longer be unimodal; it is 
this property which invalidates the System Size Ex­
pansion at such points. 

DERIVATION OF CORRELATION FUNCTIONS 

The foregoing derivations of the expressions for 
the means and covariances of the random variables 
have yielded little information about the dynamic 
characteristics of the fluctuations. The auto- and 
cross-correlation functions, however, can provide this 
information. These functions yield measures of the in­
fluence of the value of a random variable at time t on 
the values of the random variables at time t + -r. Two 
processes with equal means and variances but differ­
ent auto-correlation functions can behave differently. 
For a Markov process, the auto- and cross-correlation 
functions can be easily derived [1]; the governing 
equations for them are the same as that for <Z;> , 
Eq. (19). Defining the correlation matrix as 

(24) 

the following set of differential equations can be de­
rived by relating K(t) to Cov[Z;,Zj]; 

K;,j (o) = Cov[Z;,Zl 

where 

Ai\ = Aj,k ({~
1 

}) 

{~
1 }= steady-state values of Mt)} 

Cov[Z;,Zi]" = steady-state covariance of Z; and Zj 

(25) 

Equation (25) is a direct result of the linear nature of 
Eq. (19) and of the fact that the process is Markovian. 
It also follows from Eqs. (24) and (25) and the relation­
ship between the random variables {Z} and the origi­
nal random variables {N} that the correlation functions 
for the random variables {N} can be found by solving 
Eq. (25) subject to the initial conditions 

where 
K;,j (0) = Cov[N;,Nl 

Cov[N;,Ni]" =steady-state covariance of N; and Ni 
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In Part 3, the final part of this series, the master 
equation and the System Size Expansion are applied 
to modeling of a chemically-reacting system. 
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NOTATION 
Ai 
Ai 

Ai,i 
Bi,i 

Bi,i 

Cov[Ni,Ni] 

Cov[zi,zi] 

Ki,i (-c) 

(Ni} 
p( {n} ,t) 

P( {n},t) 

P({n} 1, tl{n}0 , t 0 ) 

Wt({n}o,(nh) 

Zi 
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first jump moment 

Ai/Q 

coefficient in expansion of Ai 

second jump moment 

Bi,i /Q 

{NiNi}-(NiXNj),covarianceof Ni and Ni 

(zizi)-(Zi){zi),covariance of Zi and Zi 

correlation matrix defined as {zi(O)Zi(-c)} 

for Zi and Zj, or as 

{Ni(o)Ni(-c)}-(Ni(o)}{Ni(-c)) for Ni and Nj 

number of entities possessing feature j 
number of entities possessing feature i and 
feature j 
expected value of random variable Ni 

joint density function of continuous random 
variables {N} 
joint probability of random variables {N} 

conditional probability of random variables 

{N} 
1 

at time t given the value of random 

variables {N}0 at time t0 
rate of transition from state {n}o to state {n:} 1 
fluctuating component of random variable 
Ni 
expected value of random variable Zi 
expected value of product of random 
variables Zj and Zj 

Kronecker delta where ak(o) = 1 

and ak<x) = 0 for x '#- 0 
magnitude of change in random variable 

Ni 
small time interval tending toward zero 
deterministic variable corresponding to 
macroscopic behavior of Ni 

homogeneous intensity of transition function 

system volume 
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RANDOM THOUGHTS 
Continued from page 71. 

straight A's for the rest of eternity; 2) pocket their tuition; 
and 3) don't give them the beer. 

CORPORA TE EXECUTI VE MODEL 

Demand a high six-figure salary when offered the 
position of chancellor. When you get it, use the interest 
on your university's $200 million endowment to buy 
your way into financial control of a small but productive 
college in another state. Fire all their deans and 
department heads and put your own people in those 
positions. Move their best professors to your university, 
fire the others who don't have tenure, take any of their 
laboratory equipment you can use and sell the rest. Then 
fold the college and use the losses to offset the profits 
from the equipment sale, leaving yourself with a net 
annual corporate tax liability of $3.27. Keep doing this. 
When you've ruined enough small productive colleges 
to get your salary up to seven figures, announce that it is 
in the university's best interests to teach all classes in 
Japanese. Sell controlling interest in the university to the 
Kyoto Institute of Technology, participate in the dedica­
tion of the sushi bar where the Burger & Brew used to 
be, and retire just in time to miss the cafeteria riot and 
the disgusting things those ungrateful student hooligans 
do with all that raw fish. 

••••• 

And that's all there is to it. With these few 
simple techniques we can easily transform our images 
and start to enjoy the good life. 

On the other hand, there may be something to say 
for the status quo. As things stand now, most of us do 
our jobs without exploiting anyone's vulnerability or 
innocence, enriching ourselves at their expense, or 
trampling on their dignity. We may have to forego the 
Swiss bank accounts this way, but it still seems like a 
good bargain. We just have to be sure that our success is 
measured by the quality of our teaching and research 
and by nothing else .. . but then we're educators and 
scholars by profession, so there's no problem. 

And now if you'll excuse me, I've got to get my 
notes together for the meeting at 10:00 where we review 
Greg Furze and Roger Snavely for promotion and 
tenure. Furze gets great teaching reviews and he's 
written a couple of research papers that people think 
very highly of, but there's not much by way of grants. 
Snavely is another story. He brings in a mint in funding, 
but his teaching evaluations are grim and his graduate 
students complain that they hardly ever see him, even 
though he keeps them here for as long as seven years. 
Should be an interesting meeting. 0 
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