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In Part 1 of this paper, we introduced notation for 
functions and their derivatives, and through 

using this notation, we formulated a purely 
mathematical background, based on the properties 
of functions. We shall now show an approach that 
may be used to introduce the fundamental ideas of 
thermodynamics. 

We start by explaining to the students that the 
purpose of thermodynamics is to enable us to corre­
late and predict the behavior of real systems con­
taining matter. In doing this, we shall use the mathe­
matical background which was formulated in Part 1, 
together with a knowledge of the behavior of matter 
(which is studied in such subjects as physics and 
applied mathematics). 

Additionally, we will need to make some basic 
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assumptions or axioms, which we have labeled be­
low as "postulates." There can be no a priori justifi­
cation or "proof' of such postulates, and some of 
them may seem at the time to be rather peculiar. 
The only reason for using these assumptions rather 
than others is that the equations which result seem, 
from experience, to be useful in our stated purpose 
of predicting the behavior of matter-containing 
systems. 

This state of affairs is similar to the exposition of 
Euclidean geometry, where we first had to accept a 
number of axioms (such as "parallel lines never meet," 
and "vertically opposite angles are equal"). We could 
then develop a succession of theorems (many of which 
have results which now seem second nature to us) 
which have proved to be useful in many areas of the 
science of measurement. Alternative sets of axioms 
(such as , for example, "parallel lines do meet") lead 
to the development of alternative (non-Euclidean) 
geometries, some of which are, in fact, found to have 
uses in other areas. 

Physical Background 

We should agree, before we begin, that we have 
an understanding from physics of the concepts of 
length, time, and mass, to which we shall add the 
chemical concept of the measurement of amount of 
material in number of moles rather than mass. 

The concept of length extends readily to give us 
area and volume. Combined with time, it gives us 
the concepts of velocity and acceleration . From mass 
and acceleration (or from momentum, obtainable from 
mass and velocity) we may obtain the concept of 
force. From force and area we obtain pressure, and 
from force and length we obtain work. We therefore 
assume that we have a common agreed-upon under­
standing of these ideas, which we shall not bother to 
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define more fully at this point. 

We shall need to consider a number of "thought 
experiments" involving these concepts. Some of these 
we could actually perform; others are somewhat ideal­
ized, so that it might be difficult to set them up 
exactly in practice. But we should have no difficulty 
in envisaging the outcome of these procedures. In 
some of them we shall need the concept of tempera­
ture. It is more difficult to agree upon an exact quan­
titative definition of temperature at this point, but 
we should be able to agree that we have common 
concepts of "hotter" (= higher temperature) and 
"colder" (= lower temperature). 

Conservation of Energy 

Our basic primary axiom is that energy is con­
served. We can no more prove this than we can any 
of the other postulates which we shall make below, 
although we may perhaps take comfort in the suc­
cessful description of the behavior of matter in the 
vast amount of science (in addition to thermodynam­
ics) which has as its basis the Principle of Conserva­
tion of Energy. 

We now need to develop a quantitative mathe­
matical expression of this principle. We might start 
by saying that if energy is conserved, the energy of a 
body or system in state 2 must be the same as it was 
in state 1, which we might express as 

El= E2 (42) 

Now, what terms go to make up the energy E? If 
we consider experiments which we might make with 
falling stones or moving projectiles, experiment would 
lead us to conclude (in an idealized situation) that 
the energy of these bodies was made up of the sum of 
the two separately identifiable forms of energy which 
we call kinetic and potential energies. Thus, we could 
re-write Eq. (42) as 

or 
(43a) 

(43b} 

where we are assuming the usual definitions that 
EK = ½ mv2 and EP = mgh. 

Consideration of the state of affairs when we 
raise our stones by hand (increasing their EP with­
out changing EK) or proceed to throw them (increas­
ing their EK without decreasing EP) shows that this 
formulation is inadequate. We need to invent a con­
cept of the transfer of energy to the body (or system) 
under consideration from an external source. Giving 
this concept the symbol w, we may extend Eq. (43b) 
to 
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We start by explaining to 
the students that the purpose of 

thermodynamics is to enable us to 
correlate and predict the behavior of real 

systems containing matter. 

(44) 

(Of course, the Principle of Conservation of Energy 
still applies overall since the corresponding equation 
for our hand or other source of the energy term w 
will be L\E - w = 0.) We find that Eq. (44) is now an 
adequate description of these cases if we use a w 
value calculated from 

w =ff · dx ( 45) 

(where f is the force applied over distance x ). We 
may thus identify w with our prior concept of work. 

But now consider what happens when our flying 
objects hit the ground, or an immovable wall, losing 
their EK and EP without any w being apparent. We 
are forced either to abandon the Principle of Conser­
vation of Energy, or (noting in passing that bodies in 
such situations are observed to get hotter) to con­
clude that the energy which is "missing" from the 
terms of Eq. (44) must still be present in another 
form. We invent the concept of "energy of state" or 
"internal energy" to account for this energy. Giving 
this new concept the symbol U and extending Eq. 
( 44) to account for it, we obtain 

L\EK + L\Ep + L\V = w (46) 

We shall not continue the argument further at 
this point, but will merely note that further addi­
tions to the left-hand side of Eq. (45) may be neces­
sary in situations where energy is present in forms 
which we have not accounted for. Terms such as 
magnetic, electrostatic, or surface energies may need 
to be introduced (or these may be regarded as an 
extension of the concept of potential energy). 

We find by experiment that if we put a fixed 
amount of some specific material (such as oxygen 
gas) into a well-insulated enclosure, we can totally 
define the properties of the material if we know two 
of the variables, such as the values of the pressure 
and volume. That is, whatever happened before, if 
we know the "state of the system" (i.e., the values of 
the pressure and volume), then we know that the 
values of other variables (such as density, refractive 
index, and thermal conductivity) will be uniquely 
determined. In other words, we know that these 
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other variables are a function of pressure and (spe­
cific) volume only. 

It turns out in practice that not all pairs of vari­
ables are equally good for uniquely determining the 
state of the system. For example, pressure and vol­
ume will not uniquely determine the state of liquid 
water close to 4°C, where the density goes through a 
maximum. Thus, our postulates will later be made 
in terms of specific pairs of variables which do not 
have such problems associated with them. 

Now consider an experiment such as the one 
shown in Figure la. Material contained in a well­
insulated enclosure may be agitated by the stirrer or 
acted upon by the piston. The movements of the 
piston and the stirrer shaft both involve work which 
we may measure in terms of our accepted concepts of 
force-times-distance (or the straightforward exten­
sion to torque-times-rotation). The pressure and vol­
ume of the material in the container are also meas­
urable quantities. 

Now consider the changes in P and V which we 
may obtain in this apparatus. (For this purpose it 
may be easier to first consider the contents to be a 
gas-but similar, more complex, apparatus could at 
least be envisaged for other materials.) By pushing 
or pulling on the piston we may change the P and V 
of our gas along curved lines such as those shown 
in Figure lb. (If we had an ideal gas, these would 
be the lines PV1 = constant.) By rotating the 
stirrer with the piston held fixed, we find that we in­
crease the temperature, and hence the pressure, at a 
fixed volume. 

By utilizing suitable portions of such paths, we 
find that not only can we move (in one direction, 
anyway) between any pair of points, but we can also, 
in fact, do so by a variety of different paths. Figure 
lb shows two of the infinitely many paths from point 
1 to point 2. For each path, we may measure the sum 
of the work done by the stirrer and the piston. 
We find that, for fixed final and initial points, the 
total work required is a constant, irrespective of the 
path taken. 

Now consider the energy conservation equation, 
Eq. (46). Since there are no changes in the kinetic or 
potential energies of our stationary apparatus, the 
equation in this case reduces to 

L'1U = w (47) 

Thus, it appears that our concept of "internal 
energy" U is a useful one, in that U turns out to be a 
"state function"; that is, L'1U depends only on the 
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initial and final states, not on the path. By choosing 
some arbitrary reference state (say, P

0
,V) and as­

signing it a value of U (say, U = 0), we may by a 
suitable experiment measure the value of U at any 
other (P,V) point. Therefore we need have no further 
"understanding" of the nature of our quantity U; it 
is sufficient that we can measure it (and that it 
will prove in due course to be a useful concept for 
our purpose). 

However, if we perform these experiments in an 
apparatus that is not well insulated, all our care­
fully thought-out theory appears to collapse. Indeed, 
in some cases an apparatus left in state 2 may re­
turn to another state without the performance of 
any work w. Rather than abandon the Principle of 
Conservation of Energy, we conclude that there must 
be other ways than work of transferring energy to 
the system. We give this means of transferring en­
ergy the symbol q, and Eq. (46) becomes 

(48) 

We may obtain quantitative values of q from 
experiments in an apparatus such as the one shown 
in Figure 2. From experiments performed as in Fig­
ure 1, we may obtain the L'1U value for any change. 
Thus (theoretically at least) we know the depend­
ence ofU on P and V, which is the function UPv_ The 
energy balance for experiments conducted as in Fig­
ure 2 may be rearranged to give 

q = L'1EK + L'1Ep + L'1U - w ( 49) 

Experiments (or processes) for which Eq. (46) (or 
Eq. 4 7) is an adequate description are termed 
adiabatic processes and need to be surrounded by 
perfectly insulating or adiabatic surfaces. Those in 
which it is necessary to allow for the energy transfer 
term q are said to be non-adiabatic, and the surfaces 
which permit energy to be transported through them 

p 

V 

C a J C b J 
FIGURE 1. System with work terms. 
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in this fashion are called diathermal. 

We note from experience that the energy trans­
fer term q occurs when our (non-adiabatic or un­
insulated) system and its surroundings are ;t differ­
ent temperatures, and we give q the name heat . One 
should be careful about the fact that heat q is an 
energy transfer mechanism, not a form of energy 
itself. Once energy has entered a system in this 
fashion, it is indistinguishable from energy that en­
tered as work. It is incorrect to expect to be able to 
find the "heat" inside the system. Terms such as 
"heat content" or "conversion of heat into work" are 
misleading; they are based upon a misunderstand­
ing of the equivalent roles of heat and work as en­
ergy transfer mechanisms. Because of the fact that 
both q and w refer to energy transfer processes rather 
than to quantities of some substance (caloric! ), it is 
convenient to emphasize this by calling q "heating" 
and w "working." This has the advantage ofbeingre­
lated to the words used by other authors, but em­
phasizing the process aspect. 

Neither q nor w is, of course, confined to adding 
energy to the system. Both are also possible ways for 
energy to leave the system. Thus, if the piston in 
Figure 1 or 2 moves so as to increase the volume, it 
actually has work done on it by the contents of the 
apparatus, the energy of which therefore decreases. 
We also know that if the non-adiabatic apparatus is 
hotter than its surroundings, it will lose energy as 
heat to the surroundings. 

If we use different amounts of substance in our 
experiments in order to determine lJPY, we will ob­
tain different relations (or surfaces in U-P-V space). 
We find , however, that we may reduce these all to 
one surfa~e by co~sidering not volui:ne V, but molar 
volume, given by V = VIN, where N 1s the number of 

-

A 
FIGURE 2 . Apparatus for m easuring q. 
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moles of material involved. This gives us values of 
specific internal energy, or molar internal energy, 

i.e. A A PV 
U = U (50) 

We say that U is an extensive property , 
which 9-epends on the amount of material present, 
while Uis an intensive property, which depends only 
on the state (or condition) of the matter, not on how 
much there is. 

In Part 1 of this paper, we assumed a function 
u sv and showed that this leads to Eq. (28) 

(~U)l = JTdS - I PdV = Q + W (28) 

From our experiments, we have now obtained (for 
processes where ~EK= ~Er = 0) the relationship 

(~U)2 = q + w (51) 

Here we have used the subscript 1 to identify the 
value from the equations of Part 1, and the subscript 
2 to identify the physical values from our experi­
ment. The work term w results from the displace­
ment of the point of action of a force, or w = Jf.dx. 
Suppose the process under consideration changes 
under the influence of driving forces which are so 
small that 1t is effectively in equilibrium at each 
stage (such a process is termed reversible ). It is then 
easy to show from physical considerations that this 
(force-times-distance) term may be expressed (in the 
absence of work terms such as that for the stirrer in 
Figure 1) as -JPdV. 

We now choose to equate (~U)
1 

and (~U)
2

; that is, 
we regard our internal energy U as the function u sv 
of Part 1. This is in line with our experimental 
finding that the state of a system depends only on 
two independent variables. The ones we used before 
were P and V, but once we have any two we can 
easily change them to any other two with which 
there is a monotonic relationship. (The reader need 
not be disturbed by the fact that we have not yet 
identified the variable S. ) We may choose to identify 
the V terms of both Part 1 and Part 2. Now consider 
a series of experiments performed in the apparatus 
of Figure 1, but without using the stirrer to increase 
the internal energy. As we discussed in the previous 
paragraph, the work done by (or on) the moving 
piston is -JPdV. Thus the energy balance becomes 

(~U)2 =-JP2dV2 (52) 

In these experiments, if dV
2 

is zero, it follows 
that ~U

2 
is zero. From Eq. (28), however, when dV

1 

is zero, we have 

(~U) l = -I T1dS1 (53) 
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It seems then, that whatever S represents is 
constant during the experiments we are considering, 
since (L'1U\ must be zero as long as V is constant. 
Thus we have, for these experiments, 

(t1U)i = -f P1dV1 (54) 

Since we have equated the U and the V terms, 
Eqs. (52) and (54) will only yield the required results 
for all possible experiments if the P terms represent 
the same quantity. We thus identify the variable P 
which we defined in Eq. (16) by P = -usv· with our 
physical concept of pressure. 

It then follows that we may put 

(55) 

and hence 

w = W =-f PdV 

q = Q = f TdS (56) 

If the process is not at equilibrium at each 
stage (that is, it is not a reversible process), then 
w =I:- - JPdV. Thus for this type of process, w =I:- W and 
so q =I:- Q. In practice, we seem to find that 

(57) 
so that 

w~W=-f PdV 

(58) 

Predicting the Behavior of a System 

Figure 3 shows an example of what we may re­
gard as the basic problem of thermodynamics; if we 
can find a method for solving problems of this na­
ture, we shall in fact be well on the way to our 
desired objectives. The diagram shows a container 
constructed of walls which are 

• rigid so that th e volume of th e material which they 
contain cannot change 

• adiabatic so that the transfer of energy to the contents of 
th e container by the "q" process is not possible 

• impermeable so that the material in the container cannot 
penetrate the walls, nor can additional m atter enter 
through the walls 

The container is divided into two sections by a 
barrier, the material of which is also rigid, adiabatic, 
and impermeable. The volumes on each side of the 
divider contain material at specified conditions (na­
ture of the matter, amount of matter, temperature, 
pressure, etc. ). These conditions need not be the same 
for each side. 

We assume that each side of the apparatus is in 
an equilibrium state , by which we mean that there 
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are no observable macroscopic changes in the state 
of the matter in the system with time ("observable" 
using whatever senses or methods of measurement 
we might apply.) We shall further assume that we 
are concerned with simple systems , which are chemi­
cally inert and homogeneous. 

The problem which we wish to solve is this: Sup­
pose that one (or more) of the constraints imposed by 
the barrier is removed. If we remove the rigidity 
constraint, for example, we allow the barrier to move. 
Removing the adiabatic constraint permits energy 
to transfer as q through the barrier while maintain­
ing the other constraints. Removing the impermea­
bility constraint would permit material to pass 
through the barrier, which would still be rigid and 
adiabatic. (It is less easy to think of how this might 
be achieved directly in practice, but that is no reason 
for not considering the problem. ) When any of the 
constraints are removed, we can see that in general 
some (at least) of the conditions in the two sections 
of the apparatus will change. We wish to predict the 
new equilibrium states that will result. 

We know from experiments that ifwe release the 
constraints, certain things will happen, but not the 
reverse. For example, pressure, temperature, and 
concentrations tend to equalize, while the reverse 
does not happen. These statements in no way violate 
anything we have said before, but neither do they 
give us any information as to which states the sys­
tem will proceed to at equilibrium. In order to de­
scribe these experiments it is necessary to have fur­
ther postulates. Furthermore, while we have agreed 
that we have some idea of what constitutes a con­
stant S experiment, we have not really defined ei­
ther Sor T. Thus, what follows addresses the defini­
tion of these quantities, and gives us results which 
are in accordance with our knowledge of the real 
world. 

FIGURE 3. Apparatus with internal partition. 
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Solving the Problem: The Postulates 

We shall accept that matter contained in a sys­
tem in an equilibrium state has an internal energy 
U, and that this is an extensive property (so that it is 
proportional to the amount of material present) and 
an additive property (so that the total internal en­
ergy of the apparatus is the sum of the internal 
energy of the two portions). We shall then make our 
first postulate: 

POSTULATE 1: Equilibrium states are completely 
characterized by the values ofU, V, and Ni -that is, by 
their internal energy, volume, and number of moles of 
various materials which they contain. 

Note that this is entirely consistent with our 
experimental knowledge that (for a fixed amount of 
a given substance) the equilibrium properties are a 
function of two variables. The two variables that are 
chosen are a pair which do not give rise to the prob­
lems with uniqueness discussed earlier. 

We now consider how to predict the state to which 
our system will move when we relax (as discussed 
above) one of the internal constraints. Will it, for 
example, move to the state of lowest energy? This 
idea might sound attractive; unfortunately, a little 
further thought shows that the rigid, adiabatic na­
ture of the external walls (which constraints are not 
going to be relaxed) means that both q and w will be 
zero. Hence ~U = q + w = O; that is, the total internal 
energy of the system is going to remain constant. 
Thus, this suggestion is not correct. We need some 
further postulates: 

POSTULATE 2: Each equilibrium state of a simple system 
has a property S, to which we shall give the name 
entfopy. This can be modeled mathematically by 

S = sU,V,[N;l(U,V,[NiJ) where su'v[N;l > 0 (59) 

K -
FIGURE 4. Alternative form of experiment. 
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POSTULATE 3: Entropy S is extensive. That is, S = NS, 
and for a composite system of n equilibrium states of 
simple systems, the total entropy is additive; that is 

(60) 

Now let us consider the apparatus of Figure 3. 
Suppose that we have the apparatus in an initial 
state, with the contents of the two sides at different 
conditions. Th~ material in each side is in an equilib­
rium state. Suppose that for each side we know the 
function S = s u,v,Ni _ We may therefore calculate the 
entropies S

1 
and S

2 
of the two sides of the apparatus, 

and from Postulate 3, the total entropy, which is 
given by s tot = SI + s 2. 

We now relax the adiabatic constraint imposed 
on the internal partition. This means that energy 
may move (as q) between the two sides of the appa­
ratus. We want to be able to predict the conditions 
on each side of the partition when the apparatus 
reaches its new equilibrium state (we shall call this 
Experiment 1). The energy balance for either side of 
the apparatus is of the form ~U = q + w, but w = 0 
since the barrier is rigid(~ V = 0). Thus after energy 
q has moved from one side to the other, the internal 
energies will be ul - q and u 2 + q, respectively. VI, 
V2, N ., and N2. remain unchanged. We may there-

ii , 

fore calculate new values for S1, S2, and Stot· 

Consider now the alternative form of the experi­
ment shown in Figure 4 (which we shall call Experi­
ment 2). Here the adiabatic nature of the partition is 
maintained, but some form of "energy exchange 
machine" removes energy k from side 1 and adds 
the same quantity of energy to side 2. Again, we 
may calculate the total entropy Sk tot' which by Postu­
late 3 equals S

1 
+ S2 for any value k of the energy 

transferred. 

We now postulate that the equilibrium state that 
will be reached in Experiment 1 is the same as the 
state of Experiment 2, at which Sktot has its maxi­
mum value. Notice that at each stage of Experiment 
2, after transferring energy k, we have to wait for 
the two parts of the apparatus to reach equilibrium 
states before we can calculate S

1 
and S2, since Postu­

lates 1 and 2 both apply only to equilibrium states. 
It would therefore be wrong to say that in Experi­
ment 1 conditions change so that S goes to a maxi­
mum. While conditions in the apparatus are chang­
ing, it is obviously not in an equilibrium state, and S 
is not defined. We therefore state our new postulate 
as follows : 
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POSTULATE 4: The equilibrium state resulting after the 
removal of an internal constraint is that possible 
constrained state with maximum entropy. (We assume 
that there is only one such constrained maximum.) 

Let us now apply the theory we have stated to 
the solution of the problem of Experiments 1 and 2. 
We have 

(61) 

If we consider only small values of the differentials 
dU, dS, dV, and dN., then these small values on the 
tangent plane will 

1

correspond to small changes in 
the physical system. (If the changes are not small, 
the values of the [derivatives] T, P , andµ; of the real 
system will change, so that the differentials [ which 
all lie on the tangent plane at a particular point] no 
longer represent possible states of the real system.) 
Identifying these small values by the symbol 8, we 
may write 

8U = T8S- P8V + Lµ i8Ni (62) 

Since the partition retains its rigid and imperme­
able nature, we know that 

8V1 = 8V2 = 0 (63) 
and 

8Nlj = 8N2j = 0 (64) 

Thus 

8U1 = T18S1 and 8U2 = T28S2 (65) 

or 
8S1=]8u1 and 8S2 = i 8U2 (66) 

1 2 
Now 

8Stot = 8S1 + 8S2 (67) 

= rf 8U 1 + i 8U 2 ( 68) 
1 2 

For the whole apparatus, the energy is the sum of 
that in the two portions; hence 

(69) 

Since the exterior walls are rigid, impermeable, and 
adiabatic, the total energy of the apparatus is con­
stant (q = w = 0), i.e. , 

8Utot = 8U1 +8U2 = 0 (70) 

Hence 
8U1 = -8U2 (71) 

Thus 
8Stot = ( ]

1 
-l ) 8u1 (72) 

From which 
as~: 1 1 
au1 = T1 - T2 

(73) 
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Equation (73) follows from Eq. (9); although the 8 
values are small, they are still differentials , since 
they came from Eq. (61). 

For a maximum of Su 1, this derivative will be 
zero. Thus, Postulate 4 tells us that at the new equi­
librium state we will have 

,A -l =0 or T1 = T2 (74) 

Temperature 

We may also consider what happens ifwe do not 
allow the system to go all the way to this final 
equilibrium state; that is, if we relax the adiabatic 
constraint on the barrier for only a short time and 
then reimpose it. This is the same as operating the 
apparatus in Figure 4, but using the energy-transfer 
machine to transfer a lesser amount of energy than 
would maximize S. 

Suppose that the initial state of the system is 
such that when we relax the adiabatic constraint on 
the internal partition, energy moves as heat from 
compartment 1 into compartment 2. It follows that 
U1 will decrease (and U

2 
will increase by the same 

amount). These changes in U
1 

and U
2 

will cause a 
change in Stot (as in Eq. 68) which must be positive, 
since S must change towards its maximum. Con­
sider the graph of Stot versus U

1
, as shown in Figure 

5. Since we have L1U1 < 0 and LlStot > 0, we have 
moved from a point such as A towards a point such 
as B, and along this curve 

a~E: < o (75) 
thus 

or (76) 

B' B 

A' A 

FIGURE 5. Maximum of s01 
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By a similar argument, we can see that if the 
heat flow is from compartment 2 to compartment 1, 
~U1 will be positive, and we will be moving from 
a point such as A' towards B'. Thus the derivative 
ofEq. (75) will be positive, and we will conclude that 
T l < T2. 

Finally, we note that in Eq. (16) (or Eq. 75) we 
defined T by s'v 

T = U (16) 

which is exactly equivalent to the definition 

(77) 

It follows that Tis intensive, i.e. , independent of the 
amount of material we are considering. 

We thus have for the quantity represented by our 
symbol T that 

• it is intensive 

• at equilibrium, in the absence of any adiabatic constraint, 
we find that T, = T2 

• prior to equilibrium, q moves from 1 to 2 when T1 > T2 

and from 2 to 1 when T , < T, 

We thus see that T fulfills all our intuitive no­
tions of the concept of temperature, and we shall in 
the future identify T with temperature. We may 
further note that it was part of Postulate 2 that 

S U 'VN j > 0 

hence 

i.e., 

T>O 

Equations of State 

(78a) 

(78b) 

Postulate 2 (Eq. 59) tells us that we may write 
the entropy of a simple system in an equilibrium 
state as a function of the internal energy U , 
the volume V, and the number of moles of various 
materials: 

S = S U,V,Ni (59) 

Now recall the definitions of T and P 

T = u s'v = T8v (18) 
and 

P = - Usv' = Psv (16) 

We may substitute for Sin these equations from Eq. 
(59) and then eliminate S between the resulting 
equations to obtain a relationship between V, T, P, 
and N .. As an example, suppose that for a particular 
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system 

S = K(NVU)
113 

(79) 
where N is the total number of moles involved. From 
this expression 

and 

ausv 3S2 

T = as = NVK3 

P = - ausv = s3 
av NV2K3 

(80) 

(81) 

from which 

P 2V = NT3K3 
27 

(82) 

These relationships between P , V, T, and N are 
the form of equation of state to which we are accus­
tomed in physics and chemistry. Notice that, unfor­
tunately, it is not in general possible to reconstruct 
Eq. (79) or its equivalent from Eq. (82), the equation 
of state, without further information. From Eq. (82) 

~~ff 2 
1

3 

(au8v) = NK
3 (au8v) av v 27 as (83) 

and we cannot obtain a solution to this partial differ­
ential equation without boundary conditions. 

Units and Value for Temperature 

Ifwe consider our definition T = u s'V, we see that 
the units and value of T will depend upon those 
which we ascribe to S. Working in the other direc­
tion, we may choose to give T arbitrary units of 
degrees Kelvin. Since U must have energy units, 
this means that we are assuming units of J/K for S, 
or J/mol K for §. 

For historical reasons, we are probably stuck with 
this system. If we were free to start from scratch it 
might be more logical to let S be dimensionless, 
which would result in measuring temperature in 
Joules per mole. In particular, it would be possible to 
choose a temperature scale such that the ubiquitous 
"gas constant" R = 8,314 J/mol K (and many other 
possible equivalent values) had a dimensionless value 
of 1. The time saved by chemists and chemical engi­
neers in units conversions involving R would surely 
be enormous! 

Other Versions of the Problem 

We have considered only one version of the prob­
lem posed above. The reader should be able to pro­
vide the solution to other versions and show, for 
example, that 

• relaxation of the rigidity constraint on the partition 
leads to a final equilibrium state in which the pressures 
in the two compartments are equal 
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• removal of both the adiabatic and rigidity constraints 
results in a final equilibrium state in which both the 
temperatures and the pressures in the two 
compartments are equal 

• removal of the adiabatic and impermeability constraints 
gives a final equilibrium state in which the 
temperatures are equal and µ ;, = µ ;z for all i. 

We may regard T as a "thermal potential," in 
that a difference in T tends (in the absence of con­
straints) to cause energy to transfer as q. Similarly, 
Pis a "mechanical potential," tending to cause work 
to be done (as an JPdV term). In the light of the third 
result above, we name µ the chemical potential, since 
a difference in µi produces a potential for the move­
ment of component i. 

We note that in this approach it is not necessary 
to "define" S by way of equations such as 8S = 8q/T, 
where the value of 8q is so circumscribed that the 
equation really has no meaning, and the student 
ends up learning the subject (if at all) by a hierarchi­
cal process of learning what is or is not permissible. 
The difficulty of trying to understand the "meaning" 
of entropy is obviated by having a perfectly formal 
way of defining it. Thus we only need to calculate its 
value, not to understand it. 
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REVIEW: Introduction to Rheology 
Continued from page 131. 
phenomena, to material functions, and to the impor­
tance ofrheology in industrial processes. The text is 
complemented by numerous tables and figures that 
illustrate the behavior of a wide range of materials. 
Theoretical and empirical relationships among ma­
terial functions are discussed in these chapters, and 
well-known models for non-Newtonian viscosity (e.g., 
power law, Carreau, Bingham) and for linear viscoe­
lasticity (e.g., Kelvin, Maxwell, Jeffreys) are pre­
sented. 

Each of the chapters mentioned above includes a 
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section describing the experimental measurement of 
the material functions discussed in the chapter. This 
emphasis on rheometry will be interesting and use­
ful to many readers, especially those involved with 
rheological characterization of materials. Measure­
ment techniques and configurations of commercial 
rheometers and research instruments are surveyed, 
and the suitability of particular types of instruments 
for particular tasks is discussed. Theoretical prin­
ciples of measurements in various rheometer geome­
tries are presented, and excellent introductory dis­
cussions of the factors limiting the range and accu­
racy of measurements are provided. 

While the first part of the book is concerned with 
general aspects of rheology, the sixth and seventh 
chapters are devoted, respectively, to the rheology of 
polymeric liquids and the rheology of suspensions. 
These chapters provide an overview of two impor­
tant areas of rheology, and also include introduc­
tions to topics of current research interest such as 
liquid crystal polymers, reptation models, and nu­
merical simulations of suspension rheology. 

The final chapter returns to continuum mechan­
ics, a topic no doubt dreaded by many of the in­
tended readers. But those who persevere are re­
warded by a concise statement, mostly in words 
rather than equations, of the principles of contin­
uum mechanics that govern the formulation of con­
stitutive equations. A highly condensed survey of 
the mathematical forms and rheological predictions 
of constitutive models is also included. This brief 
chapter refers interested readers to many excellent 
references for more detailed treatments of the sub­
ject. 

Throughout the book, the authors guide the reader 
toward more comprehensive sources of information, 
and the reference list is excellent and up-to-date. 
Although the treatment of many topics is necessar­
ily brief, it is authoritative, and beginning rheolo­
gists will not need to relearn the material as they 
advance in their sophistication. The text is well writ­
ten, and it is infused with explanations of the his­
tory and development of rheology, which enhance 
the reader's pleasure as well as his or her under­
standing. The book is very suitable as a textbook for 
an introductory course in rheology. However, the 
material is not presented in a problem-oriented style, 
and some instructors may feel that the absence of 
example and homework problems is a drawback. 
The book is certainly well suited for individual study, 
and I would recommend it highly to anyone seeking 
a sound, but accessible, introduction to rheology. 0 
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