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I has long been recognized in the chemical engi­
neering profession and in the physical and chemi­
al sciences that material and energy transport 

play a central role in both the processing of materi­
als and in chemical reactor performance. Much of 
the theoretical and numerical modeling efforts for 
transport and reaction, however, has traditionally 
been restricted to linearized models (e.g., linear rates 
of reactions, linear irreversible thermodynamics for 
transport and dissipation, and neglecting convection 
as a source of nonlinearity). 

It is now clear that approaches solely based on 
linear theories fail to describe many interesting prop­
erties of these systems; namely, spatial and tempo­
ral organization, the formation of patterns, and the 
existence of time-dependent, aperiodic states. In fact, 
the field of nonlinear dynamics (which encompasses 
a variety of distinct disciplines) has emerged as a 
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coherent subfield of science in the last decade. In the 
field of chemical engineering, pioneering efforts in 
the study of strongly nonlinear reaction-diffusion 
systems have been pursued by Amundson, Aris, and 
collaborators.r1,21 

In general, when a system that is initially placed 
in a state of thermodynamic equilibrium is forced 
(and sometimes maintained) away from that state, 
its evolution can lead to a rich variety of phenomena, 
quite distinct from systems that are in, or close to, 
equilibrium. In some cases the system goes through 
a number of instabilities that lead to chaotic behav­
ior. In others the evolution is through a succession of 
spatiotemporal patterns that may lead to compli­
cated, albeit stationary, structures. 

From a fundamental point of view, the common 
feature of all these systems is the essential role 
played by the nonlinearities in the relevant equa­
tions of the models. In most cases, the nonlinearities 
cannot be studied as perturbations around some well­
characterized state, but rather they lead to qualita­
tively different behavior. 

Our research focuses on several complementary 
aspects of problems that encompass convective­
diffusive transport (with and without chemical reac­
tions) in a variety of applications of current interest 
in chemical engineering. Four main areas of research 
will be reviewed here: 1) chemical and catalytic re­
acting systems, 2) biological and biochemical inter­
acting systems, 3) convective instabilities in fluids 
and liquid crystals, and 4) crystal growth from the 
melt. They share a common methodology based on 
nonlinear dynamics, but since a general formulation 
(let alone a general solution) to all of the problems is 
out of the question at the present time, each re­
search area focuses on the most relevant mecha­
nisms and nonlinearities for the case at hand. 

For example, the study of chemical and catalytic 
reacting systems is conducted in one spatial dimen­
sion and with considerably simplified convection. In 
the study of convective instabilities, only convective 
and diffusive transport is considered. In the latter 
case the system is also kept not too far above the 
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threshold for the primary convective instability so 
that the emerging patterns are relatively simple 
(away from a turbulent state). The study of crystal 
growth from the melt allows for moving boundaries 
of arbitrary shape separating the various phases, 
but neglects convection. 

The main goals of the research in all cases are 
characterization of all possible stationary states 
of the system (uniform and, more importantly, 
states which are non-uniform in space), determina­
tion of the stability of these stationary states when 
the parameters that can be controlled experimen­
tally are changed (e.g., the composition of the reac­
tants and the temperature of the reactor), and the 
calculation of the transient evolution between these 
stationary states. 

HIERARCHICAL APPROACH 
FOR INTERACTIONS IN CHEMICAL, 
BIOCHEMICAL, AND BIOLOGICAL SYSTEMS 

The overall objective of this part of our research is 
to investigate the chemical, biological, and biochemi­
cal structures and functions that arise from the re­
action, diffusion, and convection of molecular spe­
cies. The emphasis is on applying operator-theoretic 
techniques and inverse integral formulations to ana­
lyze the dynamics of transport and reaction prob­
lems with multicomponents and in multidimensional 
domains of hierarchical structure (shown, for ex­
ample, schematically in Figure 1). Furthermore, the 
analysis is aided by group-theoretic methodsL31 and 
simulations performed in conventional and parallel 
supercomputers. A very wide range of naturally oc­
curring or synthetically constructed chemical, bio­
logical, and biochemical phenomena can be studied 
within the framework of reaction and convective­
diffusive transport. 

Direct interactions result from the diffusive or con­
vective coupling through adjoining boundaries be­
tween macromolecules, catalyst particles, organelles, 
and cells. Indirect interactions refer to interactions 
mediated by intervening fluid regions. Within the 
framework of the direct and indirect interactions, 
we seek to analyze the dynamic behavior of hetero­
geneous populations of macromolecules, catalyst par­
ticles, organelles, cells, and multicellular organisms 
from a hierarchical point of view. 

In this hierarchical approach, a domain (e.g., a 
population of cells or organelles) is considered in 
terms of sub-domains (e.g., organelles or macromol­
ecules) and the mathematical description accounts 
for the transport and reaction processes that occur 
inside these domains, as well as for those occurring 
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It is now clear that approaches solely 
based on linear theories fail to describe 

many interesting properties of these systems; 
namely, spatial and temporal organization, the 

formation of patterns, and the existence of 
time-dependent, aperiodic states. 
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Figure 1. A single domain (which could itself be a 
subdomain of a larger domain}, showing M subdivisions or 
layers such as the ones discussed in the text, and that 
corresponds to the model given in Eq. (1). 

between the domains throughout the environmental 
media. This hierarchical description features an as­
semblage (or superstructure) based on units of 
"smaller" dimensions which may, in turn, display 
different degrees (or levels) of description. 

This approach (although not entirely new) has not 
previously been fully exploited to describe the dy­
namics of biological and biochemical systems. Past 
efforts have focussed almost completely on extend­
ing the Rashevsky-Turing[4,5 1 ideas to a variety of 
situations, but have failed to account for the indirect 
interactions which have been shown to be as impor­
tant as the Rashevsky-Turing interactions in gener­
ating a rich variety of behaviors in catalytic reac­
tors .l6l Our research aims at elucidating the roles of 
both types of interactions. 

The operator-theoretic technique allows a full char­
acterization of the dynamic behavior of systems with­
out the complete numerical solution to the govern­
ing differential models. This also allows for a cou­
pling of different levels of information in a given 
system and thus leads to the analysis of the compos­
ite system in terms of the simpler systems. Further­
more, the inverse integral formulation allows for a 
very efficient numerical strategy to solve the com­
plete nonlinear differential model using information 
provided by the operator formulation. 

Chemical and Catalytic Reacting Systems 

The field of pattern formation in catalytic reactors 
has been reviewed recently in the framework of di-
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rect and indirect interactions.11 1 The analysis ad­
dresses a wide variety of aspects , including the in­
troduction of a hierarchy of reactor models, math­
ematical techniques, previous work done in the field, 
and important problems to be investigated in future 
research efforts. 

Direct Interactions • Recently, Locke and Arcets,131 
have considered one-dimensional diffusion, reaction, 
and convection in a system of M-layers where the 
diffusion coefficients, the phase distribution coeffi­
cients, reaction rate constants, and convective trans­
port coefficients were allowed to vary from one layer 
to the next. Coupling between the layers was mod­
eled through equilibrium and flux boundary condi­
tions, where the flux condition included both convec­
tion and diffusion. For one-dimensional transport 
which may include electrophoretic transport in rect­
angular coordinates, the general molar species con­
tinuity equation for the mth layer is 

acm ( V) acm a
2
cm -=-u - - + D - - + k f (c ) at m L m ax m ax2 m m m 

(1) 

where 

c = cross sectional area average molar species con­
centration 

(VIL) applied voltage per unit length 
u electrophoretic mobility 
k reaction rate constant 
D diffusion coefficient 
f function that contains the concentration and spa­

tial variations of the reaction rate. 

In the above model formulation, each layer is as­
sumed to be a different phase, and therefore flux 
and equilibrium boundary conditions are required at 
the M - 1 interfaces. A general approach would re­
quire the addition of a material balance over well­
mixed external regions in analogy with the approach 
of Ramkrishna and Amundson19·11 I and Parulekar 
and Ramkrishna.l 121 This would give 

V0 ~to =c0rF0 - c0 F0 +a[D i( ~; )x=o+ - u 1(r)/ 1(x=O+)] 

(2) 

VL d;tL = cLfFL - cLFL - a[DM (a;: ).=L- - uM(ltcM(x = L- )] 

(3) 

where 

V volume 
c molar concentration 

F volumetric flow into the mixed cells 
a cross sectional area of the membrane surfaces 
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The subscripts O and L represent the two well-mixed 
external regions, and f r epresents the feed streams 
into the two external regions (shown schematically 
in Figure 1). 

The interactions between the different layers in 
this model can be considered to be direct interac­
tions since the layers are physically and geometri­
cally coupled at their (phase) boundaries. This is in 
contrast to coupling through indirect interactions 
that rely on an intermediate phase, such as a bulk 
fluid , to mediate the interactions between the two 
systems not physically adjacent. The model described 
here may be viewed as a prototype to investigate the 
behavior of cells immersed in a fluid environment. 
The system will feature an assemblage of domains 
as shown in Figure 1. The solution to the above 
mod.els is being undertaken by using operator-theo­
retic methods .cs-131 Current work is concerned with 
performing linear stability analysis for the case of 
reacting systems coupled with hydrodynamic and 
electrophoretic transport and diffusion. 

Indirect Interactions • In a series ofrecent stud­
ies, Arce and Ramkrishnacs,7,141 and Ramkrishna and 
Arceris-171 considered transport and reaction problems 
in catalytic reactors. This research has shown that 
indirect interactions are as important as the direct 
interactions in producing a wide variety of very in­
teresting steady state and dynamic behaviors in cata­
lytic reacting systems. Moreover, assemblies of cata­
lyst particles showing only interactions mediated by 
the fluid medium are able to display a broader class 
of collaborative phenomena (i.e. , behaviors caused 
by the mutual interactions among the particles) than 
those found in assemblies showing only direct inter­
actions. Assemblages of catalyst particles with only 
indirect interactions1s,71 have uniform steady states 
that can show collaborative multiplicity and collabo­
rative reversal of instability before breaking the sym­
metry. This allows the particle to preserve, partially, 
the stability inside the reactor. Pattern formation is 
displayed when the assembly of catalyst particles 
breaks the symmetry of the uniform steady state 
(see Figure 2). 

Collaborative multiplicity and collaborative rever­
sal of stability can also be observed in patterns; 
however, it is impossible for the assembly to show 
collaborative reversal of stability. The mathematical 
analysis that is used to study this multitude of phe­
nomena is based on a theory that exploits the com­
plete understanding of the isolated particle (or cell) 
in an operator-theoretic framework. Furthermore, 
the analysis has been pursued further by using sin-
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Figure 2. Pattern formation in a well-mixed system show­
ing two individual interacting catalytic particles or cells. 
Configurations 2, 4, and 5 clearly show the cells in two 
different steady states. Different steady states inside each 
cell are schematically depicted with different patterns. 

gularity theory and group-operator methods.t1a1 In 
addition, the investigation has been extended to cata­
lytic packed-bed reactorsl16l where indirect interac­
tions among particles (with internal diffusion) are 
accounted for in an axial diffusive convective fluid. 

This investigation is very relevant for describing 
the behavior of assemblies (or superstructures) of 
cells in terms of smaller domains (or units). These 
computations, which include the determination of 
regions of different behaviors in the parameter space 
and the identification of all the steady states, can be 
efficiently performed using an inverse integral for­
mulation.L191 This inverse integral formulation uses a 
non-linear integral operator of the Hammerstein­
Volterra type with a kernel given by the Green func­
tion of the differential problem. The Green function 
can be computed in terms of the eigenvalues and 
eigenvectors of the differential linear (transport) op­
erator without the reaction terms. This approach 
greatly simplifies the computations of steady states 
for different kinds of non-linear sources. Further­
more, the integral formulation is very suitable for 
implementation by parallel computer architectures 
and, therefore, the process of obtaining steady states 
from complex assemblages composed of several units 
(cells) can be greatly accelerated. 
Fall 1992 

Biological and Biochemical Interacting Systems 

Rapid advances in molecular and cellular biology 
over the last ten to twenty years have inspired re­
search efforts in the development of molecular and 
metabolic engineering. In order to advance our abili­
ties to create artificial systems through molecular 
and metabolic engineering, it is necessary to have a 
full understanding of the fundamental dynamics of 
living systems. Dynamical aspects ofliving systems 
include subcellular enzymatic reactions for cell 
growth and reproduction, enzymatic and genetic­
level control processes, supracellular morphological 
development, cell cycles, and evolutionary processes. 
In addition to developing an understanding of how 
each separate level of process works, it is necessary 
to integrate different levels of structure into an over­
all framework that describes the interactions be­
tween these different levels . 

The interplay of convective-diffusive transport with 
reaction yields a wide variety of steady-state and 
dynamic behavior in biochemical and biological sys­
tems. This includes oscillations, wave propagation, 
multiplicity of uniform stationary states, and (tem­
poral and spatial) pattern formation. Oscillations 
occur in enzyme reactions, protein synthesis, cell 
cycles, muscle contraction, and many other cellular 
and physiological processes.1201 Oscillations in the 
glycolytic pathway have been extensively studied 
both experimentally and theoretically. Most of the 
efforts in the literature have been devoted primarily 
to temporal variations and to the determination of 
stability conditions for non-linear chemical reactions 
with several components.120,211 Generally, in isother­
mal systems, it is necessary for the chemical reac­
tions to exhibit non-linear kinetics in order for tem­
poral patterns to occur. Higgens1221 considered the 
general types of autocatalytic chemical reactions with 
positive or negative feedback that give rise to oscilla­
tory variations of species concentrations. Some very 
current applications of temporal pattern formation 
involves modeling cell cycles via the recently deter­
mined key metabolic component cyclin.l231 

Temporal variation alone, however, since it ne­
glects all geometrical and spatial structure, cannot 
describe systems where spatial structure is impor­
tant. Reaction/diffusion problems have been used to 
consider problems in biological morphological devel­
opment, biochemical reactions, and population ecol­
ogy since the ideas introduced by Rashevskyt4,24f and 
Turing. is, Turing considered reaction and diffusion 
in a two-component and one-dimensional system. 

Scriven and coworkers125,261 have developed a gen­
eral analysis of multicomponent reaction and diffu-
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sion in a single region coupled to other regions 
through indirect transfer expressions. 

A large number of phenomena have subsequently 
been investigated from the perspective120,271 of reac­
tion and diffusion within a single phase. What re­
mains to be considered is a comprehensive approach 
to include systems ofmulticomponents in multiphase 
domains and a hierarchy of both direct and indirect 
interactions. The main goal of our research is the 
development of such a comprehensive approach. 

Biological and biochemical systems can be broken 
down into a number of functional and structural 
units (e.g., macromolecules, organelles, cells, tissues, 
populations, and communities). These units can in 
turn interact through direct or indirect means in 
analogy to the chemical reactor and separation mod­
els given above. Martin, et al.,1 2a1 have formulated a 
one-dimensional multiple layer diffusion and con­
vection model for the transport of auxin, a plant 
hormone, up the stem of a plant. Their model is 
simpler than the one considered above by Locke and 
ArcelB,131 and they have solved it using the cumber­
some method of Laplace transform. This methodol­
ogy gives no indication of the role of the different 
parameters on the dynamics of the process. 

From a more general perspective, Almirantis 
and Papageorgioul291 have considered reaction bound­
ary coupling between multiple layers in a one­
dimensional system as a model of intercellular 
communication. They developed a stability analysis 
to determine the conditions for pattern forma­
tion. Operator theoretic methods can give a much 
clearer view of the stability criteria through an analy­
sis of the spectrum of the operators. Currently, 
several geometrical configurations of cell systems 
are being investigated to determine their steady­
state structure, linear stability, and pattern forma­
tion characteristics. 

CONVECTIVE INSTABILITIES 
IN FLUIDS AND LIQUID CRYSTALS 

The Rayleigh-Benard instability in simple fluids is 
a classical fluid instability that has been well char­
acterized both theoretically and experimentally, at 
least when the Rayleigh number is not too far from 
the critical Rayleigh number and the aspect ratio of 
the experimental cell is not too large.130,311 Under 
these conditions, when the system is brought above 
threshold, a convective instability occurs and the 
familiar pattern of convective rolls appears. 

Although this is a simplified situation, it is very 
important in our understanding of nonlinear phe­
nomena because the equations describing the sys-
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tern are well known and the fluid parameters that 
appear in them can be measured with sufficient 
accuracy. Furthermore, experiments can be con­
ducted under well controlled conditions. It therefore 
provides a good testing ground for many of the ideas 
of pattern formation in nonlinear systems and an 
opportunity for detailed and precise comparisons be­
tween the predictions given by well defined models 
and the experiments. 

Unfortunately, for most commonly studied fluids 
the parameters of the fluid are such that systems 
comprising only a few convective rolls can be studied 
under normal laboratory conditions. The emerging 
structures are therefore greatly influenced by the 
geometry and size of the experimental cell. More 
recently, however, experiments have been conducted 
on gasesl32J or on the electro-hydrodynamic instabil­
ity in nematic liquid crystals. l33J The scale of the 
convective rolls in these cases is much smaller than 
the size of the cell and the issues discussed above are 
beginning to be studied in greater detail. 

We have concentrated on the analysis of the sto­
chastic Swift-Hohenberg equation.l34J This equation 
describes the evolution of a scalar field, function of 
position r and time t, that can be written in dimen­
sionless form as 

(4) 

The quantity £ acts as control parameter. From 
£ < 0 the solution y = 0 is linearly stable, whereas at 
£ = 0 it becomes unstable to periodic solutions. The 
stochastic function, ~(r, t), is normally assumed to be 
gaussian distributed and delta-correlated. This equa­
tion has been shown to be equivalent in the long­
wavelength, long-time limit the Boussinesq approxi­
mation to the hydrodynamic equations that described 
convection in a simple fluid close to the convective 
instability. In that case, the stochastic contribution 
is related to the underlying thermal fluctuations in 
the fluid. More generally, this equation can be con­
sidered as a generic model that describes the forma­
tion of spatially periodic structures. 

Three main issues are investigated. First, the ques­
tion of pattern selection, namely which, out of the 
infinitely many linearly stable stationary states, is 
dynamically selected from typical initial conditions. 
Second, convective patterns are effectively one- or 
two-dimensional. Fluctuations might be expected to 
destroy the long-range order implicit in the convec­
tive pattern. The third issue is the transient dynam­
ics ofroll formation. Eq. (4) has been solved numeri­
cally on the Connection Machine 2 at SCRI. The 
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aspect ratio of the systems studied ranges in the 
hundreds (i .e., several hundred convective rolls), 
much larger than systems that are experimentally 
feasible in simple fluids. As discussed above, recent 
experiments in nematic liquid crystals are begin­
ning to be able to measure thermal fluctuations and 
to study ratios comparable to the sizes that we have 
used in our solutions. We expect that our predictions 
will be tested in these latter systems. 

Figure 3 shows an example of our resultsf35J with 
the various structures of the stationary solutions. 
The configurations shown are typical examples of 
stationary solutions obtained numerically (only a 
portion of the system size studied is shown for clar­
ity). At zero amplitude of the fluctuations, F' = 0 
(states labeled smectic), configurations of rolls pos­
sess both positional and orientational long-range or­
der. At low values of F' (states labeled nematic) 
orientational correlations are long-ranged but the 
system is positionally disordered. Above the solid 
line in the figure , the pattern is completely disor­
dered. The location of the solid line in the figure has 
been found numerically for one value of£. A theoreti­
cal analysis that we have developed predicts that it 
is given by F' oc E , which is what is plotted in the 
figure. 

Work is now in progress to explore more complex 
situations with convection in non-Boussinesq sys-
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Figure 3. Portions of typical configurations obtained as 
stationary solutions of Eq. (4). The configurations labeled 
isotropic, nematic, and smectic correspond to intensities 
of the fluctuations F' = 0.075, 0.05, and 0, respectively. In 
all these plots the lines drawn are the lines of 'Jl(r) = 0. 
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terns, the decay of a long-wavelength instability of 
periodic patterns known as the Eckhaus instability, 
extensions to non-gradient systems, etc. The combi­
nation of experimental work and detailed numerical 
solutions to model systems is providing a number of 
very interesting results on the pattern forming prop­
erties of systems that are far from thermodynamic 
equilibrium. 

CRYSTAL GROWTH FROM THE MELT 

Crystal growth is but one example in the study of 
the evolution of the shape of the interfaces that 
separate domains of various phases during a phase 
transformation. Although this is one of the most 
studied examples, the same phenomenology also 
occurs in all phase transformations in which diffu­
sive transport plays a dominant role in controlling 
the transformation rate (i. e., diffusion of heat or 
of some chemical species). Examples are num­
erous, including the growth of semiconductor crys­
tals from the melt, metal alloy casting, and the growth 
of protein crystals. 

In the more general formulation, one is confronted 
with a nonlinear free boundary problem for which 
analytic solutions are rareJ36J Even in the simpler 
case in which convective motion in the fluid phase is 
neglected, limited progress has been achieved in 
determining stable propagating solutions of the front 
that separates the different phases. A great deal is 
known about the existence of steady states and about 
their stability in systems that undergo some type or 
morphological instability to a finger-like or cellular 
structure.l37J These studies have focused on models of 
directional or dendritic solidification of single com­
ponent or multicomponent systems and models of 
viscous fingering in fluids. Intricate asymptotic analy­
ses have yielded the stationary solutions of various 
models and, in some cases, the stability condition of 
such solutions to infinitesimal perturbations. 

The approach that we have taken involves recasting 
the partial differential equations that describe mass 
diffusion in the phases and the appropriate bound­
ary conditions on the moving interface, by an 
integrodifferential equation involving the coordinates 
of the interface alone, or "interface equation. "ras,391 
This is accomplished by the introduction of the Green 
function for the diffusion operator in the various 
phases. The interface equation is then solved as an 
initial value problem for a given initial position of 
the interface. Studies to date have focused on the 
analysis of the evolution of the interface shape fol­
lowing the instability of a planar front. Recent stud­
ies by us and othersL39,40J are focusing on the tran-
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sient dynamics of formation of periodic cellular struc­
tures (an example of such evolution is shown in 
Figure 4). Numerical studies reveal the existence of 
conventional stationary states in addition to travel­
ing wave states or even chaotic structures. This rich 
behavior can be observed within a surprisingly nar­
row range of material and control parameters. 

CONCLUSION 

We have summarized a variety of problems con­
cerning instabilities and the formation of patterns in 
convective-diffusive systems, with or without chemi­
cal reactions, that are being addressed in the chemi­
cal engineering department at FAMU/FSU. We fo­
cus our attention on novel mathematical approaches 
that combine analytical techniques and numerical 
work performed on conventional and parallel 
supercomputers. The analytic techniques center 
around operator-theoretic, group-theoretic, and Green 
function methods to study a variety of nonlinear 
processes in chemical and catalytic reacting systems, 
and pattern-forming instabilities in fluids and crys­
tal growth. These methods allow the implementa­
tion of powerful numerical algorithms on vector and 
massively parallel supercomputers, such as those 
presently available at Florida State University. 
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obtain the correct ordering for both the manipulated 
and the controlled variables, the engineer requires a 
great deal of process understanding. 

An alternative methodology under study in the 
IPS Lab is very ambitious in that it seeks to pose the 
multivariable control design with objective 
prioritization as a multilevel optimization problem 
with binary variables. Binary variables can be visu­
alized as on-off keys that switch controller and eco­
nomic objectives and constraints on or off as appro­
priate to achieve the desired prioritization. 

FUTURE DIRECTIONS 

As our research in neural networks, optimization, 
and process control matures, the focus in the IPS 
Lab is shifting to demonstration of the methods in 
collaboration with local industry. One project has 
begun which seeks to use neural network-based meth­
ods for controlling the quality of parts produced from 
an injection molding process. A second project is 
employing similar methods for controlling the incin­
eration of hazardous wastes. A third effort is explor­
ing the use of neural networks for optimizing the 
efficiency of combustion of pulverized coal. 

Such real-world implementations are important in 
process control research. When developments are 
restricted to simulated processes, the complete pro­
cess character can be specified by the same researcher 
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who is responsible for the control system develop­
ments. Real plants, on the other hand, have a pro­
cess character that is specified by nature, thereby 
truly testing the effectiveness of new developments. 

Perhaps the most important aspect, however, is 
that real-world demonstrations permit developments 
to be tested by the ultimate user of the technology­
the industrial practitioner. It is only when the tech­
nology is in the practitioner's hands that laboratory 
developments receive the critical evaluations which 
help guide subsequent improvements and refine­
ments, and define new avenues for fruitful research. 
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