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accompanied by the originals of any figures or photographs. Please submit them to Dr. Daina 
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It is well recognized worldwide that transport phenomena 
courses are of fundamental importance in the chemical 
engineering curriculum of major universities at both 

the undergraduate and the graduate level. As defined in the 
pioneering text Transport Phenomena by Bird, Stewart, and 
Lightfoot,1'1 which was first published in 1960, this science is 
concerned with the balance of momentum (fluid mechanics), 
energy, and mass in a wide variety of elementary and industrial 
processes . An undergraduate program in chemical engineering 
would typically have two required courses related to transport 
phenomena (fluid flow, heat and mass transfer) and perhaps 
several optional courses on some more advanced topics such 
as non-Newtonian fluid mechanics , radiation heat transfer, 
two-phase flow, rheology, etc. Although the basic conservation 
of mass , energy, and momentum equations have not changed 
since they were formulated a long time ago and an instructor 
can still confidently use Reference 1 as background material to 
his or her course, a modem transport phenomena curriculum 
at the senior or graduate level could profit greatly from some 
of the major research results that have been published over 
the last 50 years . Furthermore, as illustrated below, many 
different aspects of transport phenomena can be studied via 
the solution of a well-defined project. 

Today (and it was not the case 50 years ago) every un­
dergraduate owns a laptop computer; a student can solve 
numerically practically all 2-D coupled transport phenomena 
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problems that, 50 years ago, required the use of the computing 
facilities of the university. Although the solution of partial dif­
ferential equations is part of a course on numerical methods, 
as in the many excellent textbooks on numerical methods such 
as Reference 2, adding or revisiting this material in a course 
on transport phenomena makes a lot of sense today. The use 
of an upwind scheme for the advection terms in a transport 
equation is a good example of the symbiosis between these 
two subjects . 

A domain where considerable progress has been made over 
the last 50 years is natural convection. Half a century ago an 
undergraduate course on natural convection would focus mainly 
on the dimensionless numbers of importance (Rayleigh number, 
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Grashot number), on the Boussinesq approximation and on 
experimental correlations available for different geometries. 
Experimental and numerical results obtained over the last 30 
years have radically increased our knowledge on this subject. 
The same argument is also valid for mixed convection, i.e., 
combined forced and natural convection. 

Here we present a numerical natural convection project 
that we have given to our senior/graduate students, it is based 
on researchl31 published about 20 years ago . We highlight 
the different aspects of transport phenomena that need to be 
mastered in order to obtain a solution and discuss what the 
students can learn from this work. We feel that this project 
is in total agreement with the opinion of W.M. Kaysc41 on 
what problems for graduate students should be. Almost 50 
years ago he wrote, "At some point, and the earlier the bet­
ter, the student must face up to the analysis of problems that 
may require considerable time, possibly extensive outside 
study, and that are incompletely stated or specified so that 
individual judgement must be exercised." Although the first 
PC appeared more than 10 years later he also wrote "Many 
of the problems require numerical or graphical integrations or 
iterative calculation procedures. If (the students) have access 
to a computer they ought to develop the habit of using it in 
their problem work." 

In a planned follow-up paper we will discuss different 
variations to this problem for use in future years or in a 
graduate course. These variations are fluid layers, heat 
flow reduction, and a change in geometry. Natural convec­
tion also permits the instructor to introduce the student to 
hydrodynamic stability. 

NATURAL CONVECTION BETWEEN 
CONCENTRIC POROUS CYLINDERS 

The subject that we gave to our senior/graduate students in 
the fall semester of 2011 was: 

Consider two very long, horizantal, concentric cylinders 
maintained at constant but different temperatures with 
~" > T,,,,,· A saturated porous material,for example glass 
wool insulation, occupies the annular region between the 
two cylinders. Write the appropriate conservation equations 
for this natural convection problem and determine numeri­
cally the temperature and velocity fields in the annular 
layer. Calculate the heat loss to the surroundings. Suggest 
improvements in order to reduce these heat transfer losses. 
Assume that the temperature difference between the two 
walls (actually the Rayleigh number) is not too high so that 
the flow inside the annular region is not turbulent. 

Below we discuss the major steps involved in the solution 
of this project. 

Conservation equations and boundary conditions 

The governing conservation equations must first be written 
and simplified. The student must start by writing the continuity 
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equation in a porous medium. In vector notation and without 
any assumptions it is: 

Eop +VpV=0 
at (1) 

where £ is the porosity of the porous medium, p is the fluid 
density and V is the velocity vector. To simplify the above 
equation to V ·V = 0, the continuity equation for an incom­
pressible fluid, the students will have to understand the dif­
ference between a fluid whose density depends on pressure 
and a fluid whose density depends on temperature. We explain 
this in the classroom by discussing the flow of air over a verti­
cal radiator in the winter, when the radiators are turned on. 
The air flow rises along the radiator and the entrained dust 
particles stick to the wall just on top of the radiator usually 
in a parabolic velocity distribution shape. A review of vector 
analysis will be necessary to write this equation in cylindrical 
coordinates and, as we shall see later on, in other orthogonal 
coordinate systems. 

The simplest equation of motion for a fluid in a porous 
medium is Darcy 's law: 

k 
V =--[VP-pg.] 

µ 
(2) 

We have deliberately chosen a porous medium instead of a 
pure fluid to simplify the numerical work for senior students. 
When the annular layer is saturated with a pure fluid, the 2-D 
numerical solution can be obtained using either a vorticity­
stream function formulation or by solving the primitive equa­
tions using a SIMPLE algorithm. The number of coupled pdes 
to be solved is higher (three instead of two) and the treatment 
of variables for which boundary conditions are not known 
(vorticity or pressure) is required. Nevertheless, a pure fluid 
such as a gas could be used in projects for graduate students 
with a more solid background in numerical methods for partial 
differential equations and on the solution of the Navier-Stokes 
equations in particular. (We plan to discuss this topic in detail 
in a later paper.) 

Darcy's law is a linear relationship between fluid velocity 
and pressure drop, the permeability of the porous medium k is 
determined experimentally. Again a review of vector analysis 
is necessary to write the (r, 8) components of this equation, 
special care must be made both to express the gravity vector in 
cylindrical coordinates and to define the origin of the tangential 
coordinate 8. In natural convection and for moderate Rayleigh 
numbers the flow velocity is relatively small so that Darcy's 
law is more than adequate. Deviations from Darcy 's law oc­
cur mainly when the flow rate through the porous medium is 
high. Other more complicated flow equations for use in these 
conditions (Brinkman equation, Forchheimer equation) exist,CSl 
and the students and the instructor can spend some time in the 
classroom discussing these and deciding whether the use of a 
more elaborate (empirical) equation is warranted. 
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A control volume, on which a heat balance will be per­
formed, needs to be defined before a heat balance is written . 
The control volume that was used in this project is partially 
occupied by the fluid and partially occupied by the immobile 
solid phase . The temperatures of the solid and fluid phases are 
assumed equal for simplicity. The student must recognize that 
both the accumulation of heat and the heat conduction terms 
involve both the solid and fluid phases; however, the advec­
tion terms involve only the fluid phase. In this problem the 
conditions are such that viscous heat dissipation is negligible. 
The instructor and the students should spend some time in 
the classroom discussing these assumptions and eventually 
trying to develop a model where the temperatures of the fluid 
and solid phases are different. 

The conservation of energy equation that was used in our 
project is: 

where "A* is the thermal conductivity of the porous medium. In 
this equation fluid properties are marked with subscript f and 
properties of the porous medium as a whole (solid and fluid) 
are labeled with superscript *. The properties of the porous 
medium as a whole could be evaluated using: 

(pcJ =(1-E)(pcp), +E(pcpt 

'),,* =(1-E)\ +£Ar 

but other alternatives are also possible.f51 

The linear equation of state for an incompressible fluid 
whose density varies with temperature is: 

p=pJ1-l3(T-T
0
)] (4) 

where 13 is the thermal expansion coefficient. Natural con­
vection is driven by gravity forces, the fluid density is as­
sumed constant everywhere except in the body force term 
in Darcy's law, this is the Boussinesq approximation. As 
Joseph Boussinesq (1842-1929) wrote ( originally in French): 
"One must know that in most fluid movement provoked by 
heating, volume and density are practically constant even 
though the difference in weight of the fluid is the cause of 
the movement under analysis. From there results the pos­
sibility of neglecting density variations when they are not 
multiplied by the gravitational acceleration g, although one 
must take into account in the calculations the product of 
these two quantities ." 

The Boussinesq approximation was tested some 30 years 
ago when experiments were realized in the Skylab where 
there is practically zero gravity. When a liquid was heated 
from below, no convective movement was observed. Because 
of this, the time required to boil water under zero gravity is 
much longer than on earth. This experiment confirms that the 
Boussinesq approximation is relevant in most practical cases . 
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The next step consists in defining appropriate reference 
quantities for both dependent and independent variables and 
to render the equations dimensionless in order to highlight 
important dimensionless numbers. Here we chose Rin' the 

inner cylinder radius as reference length, (pCJ R~" /')1,' 

as reference time , '),,' I R;" (pCP)r as reference velocity, 
).,'µ/k(pCP) as reference pressure. We also defined a 
dimensionlesi temperature 0 = (T - T )/(T - T ) which 

out m out 

varies between O and 1. The number of dimensionless equa-
tions to be solved can be reduced by recognizing that, for 2-D 
incompressible fluids , it is possible to define a stream func­
tion (which automatically satisfies the continuity equation). 
In dimensionless variables the stream function is defined as: 

1 a'l' a'l' 
V =-- V =--

' r as ' 8 ar 
(5) 

The two velocity components are thus replaced by just one 
independent variable , the stream function 'ljl. In the govern­
ing equations there is one dependent variable, pressure P, 
for which it is not possible to write boundary conditions; the 
same is true for the Navier-Stokes equations . In both cases 
this dependent variable can be eliminated from the equations 
by recognizing the vector identity: 

V X VP=O. 

The final dimensionless equations to be solved are: 

ae +V ae + V8 ae = a
2

8 +! ae +__!__ a
2

8 (6) 
at ' ar r as ar2 r ar r 2 as2 

a
2 ~ +! a'l' +__!__ a

2 

\JI= Ra' (sin Sae+ cosS ae). (7) 
ar r ar r2 as2 ar r as 

The sole dimensionless number appearing in the equations 
is Ra* = ( pC )r gl3(T - T )kR /"A *v, the Rayleigh number. p ,n o~ 1n 

The two above dimensionless equations are to be solved for 
increasing (and decreasing) values of the Rayleigh number 
and for different values of the radius ratio R = R

0
ui/Rin' 

The domain where the equations (6 , 7) are to be solved must 
be defined first. In other words , is there an axis of symmetry 
in this problem? If there is one, then the equations can be 
solved either over the entire domain or, preferably, one can 
double the accuracy by using the same grid size to cover just 
one half of the domain. In the latter case appropriate boundary 
conditions must be written at the symmetry axis. The student 
must recognize that the governing dimensionless equations 
can be solved on a domain that is cut in half by a vertical line. 
Why is this not true for a horizontal line? 

The dimensionless temperature boundary conditions on the 
inner and outer cylinders are: 

0(r=l ,S)=l, 0(r=R,8)=0 . 

On the symmetry axis the temperature distribution is linear 
because both velocity components are zero there. This implies 
that the fluid cannot travel from one side to the other of the 
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symmetry axis. The boundary conditions on the stream func­
tion are very easy to formulate once the student recognizes 
that the periphery of the entire half-domain is a streamline, 
an arbitrary value of 'ljJ = 0 can be set. 

Numerical solution 

Depending on whether the numerical solution of partial dif­
ferential equations is part of the transport phenomena course 
or not, the instructor can choose between allowing the use of 
a commercial CFD code based on a finite volume formulation 
or asking the students to develop a finite difference code to 
solve the governing equations. When a finite volume code is 
employed, the primitive equations are solved and the convec­
tion terms are discretized using an upwind scheme, preferably 
of second order. Below we discuss the case where students 
develop their own code using a finite difference method. This 
method was implemented in our course. 

The partial differential equations are converted into alge­
braic equations by an appropriate discretization of the deriva­
tives. When a finite difference code is employed, students 
should use second order, central difference Taylor series 
formulas for spatial derivatives and a first order time marching 
scheme for the time derivatives. The transient conservation 
of energy equation can be solved numerically in 2-D by an 
implicit alternating direction scheme. The solution of a tri­
diagonal system of equations at each half step is required. 
If a very fine grid is employed, for example when half the 
tangential direction is totally defined by 200 grid points , the 
student could use an iterative scheme instead of the Thomas 
algorithm to solve the tri-diagonal system of linear equa­
tions . There is no roundoff error when iterative methods of 
solution are employed and the user can control the accuracy 
of the obtained solution via a convergence test. The stream 
function equation can be solved using an iterative method 
of solution (Jacobi, Gauss-Seidel, under/over relaxation) or, 
alternatively, one can add a transient term to the equation and 
solve it using an ADI scheme. 

Finally, the code will require several convergence tests . At 
each time step the stream function equation is solved by an 
iterative scheme such as the Gauss-Seidel method. The con­
vergence criterion here does not have to be very strict since 
this equation is solved at each time step. The convergence 
criterion on the heat equation should be based on the fact that, 
at steady state, the average heat flow into the inner cylinder ct: 

- . ="A.· f .;nl de q,n O Or c=R;, 

should be equal to the average heat flow out of the cylinder q
0

: 

- =-"A.' f •OTI d0. 
g out O ar r= Rout 

This leads to the definition of the Nusselt number which is 
simply the ratio between the heat flow into the porous layer 

62 

Figure 1. Streamlines and isotherms in an annular po­
rous medium, Ra= 100 and R = 2. For this value of the 
Rayleigh number there are two possible hydrodynamic 
regimes, a two-cell regime (left) and a four-cell regime 

Nu 

(right). This figure is taken, with permission, from 
Reference 8. 

Figure 2. Average Nusselt number Nu as a function of 
Rayleigh number Ra in an annular porous medium, R = 

2. The additional cell leads to a Nusselt number increase. 
This figure is taken, with permission, from Reference 8. 

(by convection) and the heat flow into the layer by conduction, 
i.e., when there is no motion of the fluid inside the annulus . 
Both local and average Nusselt numbers were calculated by 
the students. 

RESULTS AND DISCUSSION 
The developed numerical code is first run for a small value of 

the Rayleigh number until convergence is attained. The results 
obtained are used as initial conditions to calculate the profiles 
for a slightly higher Rayleigh number. This procedure was rec­
ommended to the students in order to speed up the calculations. 

For a radius ratio R
0
u,/Rin = 2 and a Rayleigh number of 

100, Figure la shows the streamline pattern and the isotherms 
within the annular region on increasing the Rayleigh number. 
The cell is rotating in a clockwise direction. For lower values 
of the Rayleigh number the streamline pattern and the form 
of the isotherms is similar; the center of the vortex moves 
upwards as the Rayleigh number increases. 
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When the Rayleigh number is increased beyond a certain 
limit, a secondary cell appears on the top of the layer (Figure 
lb), the secondary cell rotates in a counter-clockwise direc­
tion. Experiments where the temperature field in the layer 
was visualizedC61 have clearly shown that this multi-cellular 
flow regime does indeed exist. Now, if the two-cell regime 
is used as an initial condition and if the Rayleigh number 
is decreased slowly, one observes that this two-cell regime 
remains in the layer until the Rayleigh number drops below 
a value of about 65 ± 2. 

In other words, for R = 2 and for a Rayleigh number between 
65 ± 2 and a value of about 120, there are two possible flow 
regimes in the layer. This is a hysteresis loop. Although the 
upper limit value of the Rayleigh number in the hysteresis 
loop is not clearly established (the transition value depends 
on the fineness of the grid employed), experimentsC6-71 and a 
hydrodynamic stability analysis (to be discussed in a later 
paper) confirm the lower limit value of 65 ± 2. 

Figure 2 shows a plot of the Nusselt number as a function 
of the Rayleigh number. The dotted line corresponds to the 
two-cell regime ( one cell per cylinder half) and the black line 
to the four-cell regime. When the flow regime changes from 
two cells to four cells, the additional circulation at the top of 
the layer leads to an increase in the average Nusselt number. 
The experimental Nusselt numbers obtained by Caltagirone[7J 
have also been included in the figure . 

When the radius ratio R
0
u,/Rin is close to unity (for example 

R=l.1), additional cells are formed at the top of the annular 
region; this is true in both porous and fluid media. This can be 
explained by recognizing that as the radius ratio R decreases 
to 1, the cylindrical geometry tends toward the two parallel 
flat plate geometry and additional cells appear if the Rayleigh 
number is high enough. Figure 3 shows the streamlines and 
the isotherms in a porous medium for R

0
u,/Rin = 1.2, a 6 cell 

flow appears at around Ra= 300 and an 8 cell hydrodynamic 
regime appears at Ra = 800. 

We did not specifically ask our students to calculate the 
pressure distribution in the porous layer in this project. 
Taking the divergence of Darcy's law and recognizing that 
V · V = 0, the obtained result is: 

(8) 

This equation can be used to calculate the pressure field 
(see Reference 8) . 

STUDENT RESPONSE 
The above project was given in our senior/graduate student 

course on numerical transport phenomena. The accompanying 
textbooks for this course are Reference 9 or 10 depending on 
the mother tongue of the student. The students in our gradu­
ate program come from different countries of Europe and 
South America, from Northern Africa, and from the Middle 
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East. Obviously they have very different mathematical and 
computer backgrounds and some have to put in quite an initial 
effort. In order to compensate for this , we asked the students 
to work in groups of four. We also asked the students to form 
cosmopolitan groups if possible; this worked quite well. The 
choice of computer language/software was open; all groups 
used MATLAB. 

The students had one full semester to work on the project 
and they could (and did) consult the instructors outside the 
classroom all along . The other courses that were taught to 
our students during the semester did not require too much 
outside work and were graded via exams. The students were 
required to write a report that had to include the way they 
proceeded, the numerical methods chosen, their analysis 
of results , and proposals for improvement as well as the 
program itself. 

As mentioned above, the problem presented here is in the 
spirit ofwhatW.M. Kays wrote in his textbook. This problem 
could also be included in a future edition of the excellent 
chemical engineering/numerical methods textbook by Car­
nahan, Luther, and Wilkes.121 

CONCLUSIONS 

Different aspects of transport phenomena can be taught to 
senior/graduate students via a project requiring the numerical 
solution of the appropriate conservation equations . The study 
of natural convection in enclosed surfaces is one example of 
such a project. After finishing the project described in this 
paper, the student should feel much more confident in several 
important aspects of transport phenomena such as vector 
analysis, the physics of the phenomenon ofnatural convection, 
the development of a code to solve the coupled pdes , and the 
analysis of results. As we hope to show in a later paper, this 
project is also an excellent method to introduce more difficult 
but important related subjects such as hydrodynamic stability, 
heat loss reduction, and choice of geometry. 

Figure 3. Streamlines and isotherms for a porous 
annular layer, R /R = 1.2. a) 6 cell regime, Ra=300, 

B cell regime, Ra:_Boo'.nThis figure is taken, with permis­
sion, from Reference 8. 

63 



REFERENCES 

64 

1. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 
John Wiley and Sons, New York (1960), 2nd edition (2007) 

2. Camahan,B., H.A. Luther, and J .O. Wilkes ,AppliedNumerical Meth­
ods , John Wiley and Sons, New York (1969) 

3. Barbosa Mota, J .P., and E. Saatdjian , "Natural convection in a 
porous , horizontal cylindrical annulus ," J . Heat Transf er , 116, 
621-626 (1994) 

4. Kays , W.M., Convective Heat and Mass Transf er, McGraw-Hill, New 
York (1966) 

5. Nield , D., and A. Bejan, Convection in Porous Media , Springer-Verlag, 
New York (1992) 

6. Charrier-Mojtabi, M.C., et al ., "Numerical and experimental study of 
multi-cellular free convection flows in an annular porous layer," Int . 
J. Heat Mass Transfer, 34(12), 3061 (1991) 

7. Caltagirone, J .P., "Thermo-convective instabilities in a porous medium 
bounded by two concentric horizontal cylinders ," J. Fluid Mech. , 76(2) , 
337 (1976) 

8. Roache , PJ., Fundamentals of Computational Fluid Dynamics, Her­
mosa Publishers, Albuquerque , N .M . (1998) 

9. Saatdjian, E., Transport Phenomena: Equations and Numerical Solu­
tions , John Wiley and Sons , Chichester, UK (2000) 

10. Saatdjian, E., Les Bases de la Mecanique des Fluides et des Transf erts 
de Chaleur et de Masse pour l'Ingenieur, Editions Sapientia, Paris , 
(2009) 0 

Chemical Engineering Education 


