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An example problem is presented here to illustrate the 
relative straightforwardness of a number of viable 
mathematical concepts often thought of as complex 

and unwieldy. These are concepts that engineering students 
often either shy away from—considering them too difficult to 
apply—or may just simply be unaware of. These knowledge 
gaps or confidence-level issues can be quite restrictive, and can 
lead to poor choices with respect to adequately and accurately 
representing system behavior. Ideally, when en route to obtaining 
robust solutions to relevant technological problems it is impera-
tive to avoid undue oversimplifications and/or assumptions that 
can limit a solution’s range of applicability, or sometimes even 
render it essentially useless. Unfortunately, too often systems 
are modelled using these restrictive approaches. Consequently, 
the opportunity to obtain the desired robustness is often lost. 
This can be extremely problematic (a) when evaluating model 
predictive control (MPC) strategies via simulation protocols and 
(b) in establishing evaluation criteria for the various design sce-
narios involved in both process systems and advanced materials 
development, as these rely upon characterization via transport 
property determinations (Cussler,[1] Bird, et. al., [2] Deen,[3] and 
Incropera and DeWitt[4]). This latter issue is particularly relevant 
in the emerging area of nanotechnology, and specifically in its 
role in delivery platforms. Representative materials include: (i) 
smart membranes, as biomimetic systems or as encapsulation 
materials/surfaces with unique barrier properties; (ii) novel 
chaperones for drug delivery and controlled release; and (iii) 
nano-scale entities that are entrapped in macro-scale matrices 
to produce unique physicochemical properties with enhanced 
performance characteristics (e.g., Johnson, et. al.,[5] Sokolnicki, 

et. al.,[6] and Panagiotou and Fisher[7]). Topics such as these are 
of growing importance, and feature in both core and elective 
courses offered to support the student’s multiple options with 
respect to concentration tracks.

A number of courses currently available to students as either 
core or elective provide an excellent opportunity to integrate 
advanced mathematical tools into a “just in time” scenario 
along with appropriate applications to maximize students’ 
awareness for potential uses. Collaboration with applied 
mathematics professionals, such as through curriculum de-
velopment and co-teaching protocols, is a viable path forward 
to accomplish our forever evolving program objectives. By 
embracing the integrated applied mathematics (IAM) program 
methodologies, the desired modified course offerings with 
realistic goals and requisite deliverables can be obtained. 

The problem selected here for illustration is most appropri-
ate for transport and materials related courses. Its relevance 
is demonstrated through its role in determining the mass 
transfer characteristics of specially designed particle systems 
with specific molecular species selectivity. These particles 

    The Class and Home Problems section is intended to present novel and innovative scenarios 
that can enhance the teaching of chemical engineering topics. Submissions must have clear 

learning objectives, outcomes, or similar statements. The fit within a typical chemical engineer-
ing (or closely related) curriculum should be clear. Problems may represent a new application 

of fundamental principles, substantive adaptations that enable effective pedagogical 
approaches, or new non-proprietary applications of software. Manuscripts should follow the 

same general guidelines as other CEE submissions, but should be submitted directly to  
Dr. David Silverstein (david.silverstein@uky.edu)

ChE class and home problems

Illustrating the Benef its of Embracing 
an Integrated Applied Mathematics Initiative: 

TRANSPORT PARAMETERS, LAPLACE 
TRANSFORMS, AND RESIDUE THEOREM

Robert J. Fisher
Massachusetts Institute of Technology  •  Cambridge, MA 02139

Robert J. Fisher is a station director and senior lecturer in the Chemical 
Engineering Department at the Massachusetts Institute of Technology (MIT); 
and actively consults for a broad range of industries. All his degrees are 
in chemical engineering: B.S./M.S. from SUNY-Buffalo; and Ph.D. from the 
University of Delaware where he studied the stability of reaction and trans-
port processes under the direction of Professor Morton M. Denn. With honed 
skills in the engineering bio-sciences, Dr. Fisher has become a staunch 
supporter of innovative teaching paradigms that integrate STEM program 
components—particularly integrated applied mathematics (IAM) initiatives. 
His transport phenomena and reaction engineering based research efforts 
have also embraced these program integration initiatives. 

©  Copyright ChE Division of ASEE 2019



Chemical Engineering Education24

can thus be used in either delivery or sequestration platforms. 
Furthermore, this problem can serve as a basis for both an in-
class example and an extended homework assignment coupled 
with specific reading material. One scenario that has proven to 
be successful is to (i) present the “as given” problem in class 
as an example representative of the delivery platform and (ii) 
assign as homework the related problem, i.e., representative of 
the sequestration platform—requiring that students modify the 
initial and boundary conditions to model an uptake mechanism 
and to use this analysis protocol as their solution methodology.  

It is important to reiterate that use of this problem can as-
sist in meeting a major course objective, i.e., identification of 
techniques to determine transport properties. The closed-form 
mathematical solutions obtained here provide the robust equa-
tions needed for data analysis, i.e., a critical component of a 
relatively straightforward methodology to estimate the effective 
diffusivity of a material. The technique being suggested here 
is to place the material in a finite volume bath and couple ex-
perimental observations with this distributed parameter model 
representation of the system dynamics. Similar results for a 
single entity have been previously reported (Cussler,[1] Crank,[8] 
and Carslaw and Jaeger[9]; see next section for additional com-
ments), but unfortunately the details of their solution methodol-
ogy are lacking. Therefore, providing such details is a major 
objective here. That is, this paper intends to further demonstrate 
the identification and use of an applied mathematical based 
computational model to evaluate functionalized materials.

The Fickian-based diffusion equation is assumed to be the 
appropriate partial differential equation to represent the trans-
port mechanism within a given bead. The transient behavior 
of the coupled finite volume bath, represented by an ordinary 
differential equation, is the result of the flux from multiple 
beads and provides a time-dependent boundary condition at 
each fluid-bead surface interface. It is this coupling through 
the Eulerian time variable that prompted seeking a solution in 
the LaPlace domain utilizing deviation variables. Subsequent 
inversion is accomplished in a straightforward manner through 
a non-complicated application of the Residue Theorem and 
the required use of L’Hopital’s Rule. Although inversion by 
the Residue method is not a new concept, it was worthwhile 
to revisit in conjunction with this example to demonstrate ease 
of use as well. Furthermore, it should be pointed out that this 
method can be very useful in efficiently solving systems of 
nonhomogeneous linear partial differential equations. 

RATIONALE/OBJECTIVES
A fairly common misconception is that the LaPlace 

Transform method is only applicable to ordinary differential 
equations. This point was specifically driven home while on 
a consulting assignment. The company wanted to initiate a 
series of transport characterization studies to evaluate their 
new, specially designed solids that possess tunable proper-
ties. Associated with those studies they needed to develop 

various commercial-scale process alternatives that, upon 
selection of optimized operational parameters, would yield 
products with this wide range of desired material properties. 
The initial markets sought after were those areas that need 
products that meet enhanced mass transport performance 
specification. The primary characteristic necessary, but not 
sufficient, for these product expectations is tunable effective 
diffusivities. That is, although other mechanisms are in play 
with these solids (such as diffusion with immobilization and/
or reactive sites distributed throughout), knowing effective 
diffusivities provides an asymptote/limiting property to base 
further design criteria upon. Furthermore, this limited case 
analysis is useful as a guide to develop the solution algorithm 
for those more complicated situations.

The experimental approach and computational results, in 
the form of closed analytical solutions, for the analysis of a 
single spherical particle in a small finite bath, have been re-
ported earlier by Cussler,[1] Crank,[8] and Carslaw and Jaeger.[9] 

The significance of their approach is that one can obtain the 
diffusivity (D) of the bead material from the time profile of the 
bath (experimental data). Their model equations and closed-
form solutions were those obtained via classical techniques, 
such as separation of variables and eigenfunction expansions. 
Graphical methods are discussed using dimensionless vari-
ables such as the mass transfer Fourier number. 

A more robust method is to use multiple beads since that will 
provide a larger concentration response in the bath and therefore 
greater accuracy. Consequently, this multiple-bead approach 
was selected as the example problem to demonstrate IAM 
capabilities with a meaningful problem, as will be stated more 
precisely in identifying the overall objectives for this project. 
Providing the details of the methodology used to obtain the 
solution is necessary to clarify the role that additional mecha-
nisms play in dealing with those complications in any desired 
modifications. As a simple example, note that the presence of 
multiple beads alters the system’s response in a variety of ways. 
The number of beads (n) appears in the mass balance, transfer 
area, and bath-to-bead volume ratio; i.e., affecting each bead’s 
time-dependent boundary condition (at r = R0). The effect is 
felt in the steady state and overall system dynamics through 
the system time constants—which are related to the system 
eigenvalues through the volume ratio. Furthermore, the asso-
ciated eigenfunctions determine the radial distribution within 
each bead and therefore the flux from the surface of each bead 
is clearly coupled with bath dynamics. Consequently, a simple 
adjustment of the transfer area used with the flux determined 
from the single bead analysis would lead to erroneous results.   

PROBLEM STATEMENT/BACKGROUND
The specific problem selected for illustration is from the field 

of heterogeneous catalysis/reaction engineering. It is modified 
slightly from what was presented by Cussler[1] in his text as an 
example problem. As mentioned earlier, to obtain a more robust 
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methodology for data analysis, multiple beads are considered. 
Furthermore, clarifying statements about the assumptions are 
presented here to establish a better understanding about the 
relevance of this problem and subsequent results obtained. 

Quoting Cussler’s original statement: “Example 3.5.3: 
Effective diffusion coefficients in a porous catalyst pellet. 
Imagine that we have a porous catalyst pellet containing a 
dilute gaseous solution. We want to measure the effective 
diffusion of solute by dropping the pellet into a small, well-
stirred bath of a solvent gas and measuring how fast the solute 
appears in the bath. How can we plot these measurements to 
find the effective diffusion coefficient?” His solution begins 
with mass balances for both the pellet and bath, combined 
with Fick’s law and the appropriate boundary conditions. 
The subsequent mathematical rigor provides the analytical 
solution needed to prepare the parametric curves used in 
obtaining a graphical solution. Alternatively, a one-variable 
optimization process can be executed to find the best value 
for the effective diffusion coefficient that minimizes the error 
between the experimental data and the model predictions. 
In both cases the quality of the data obtained from a well-
defined experimental protocol and the appropriateness of the 
model assumptions are critical in determination of realistic 
values for the transport properties sought. With respect to 
the major model assumptions, one needs to realize that in 
any practical-use environment for catalyst applications three 
major mechanisms are in play—related to thermodynamics 
(adsorption/desorption) and rate processes (reaction at the 
catalyst sites and transport of reactants and products). Con-
sequently, to isolate the transport parameters, both reaction 
and adsorption processes must be absent from the model 
formulation as given in the following section. Furthermore, 
the experimental protocol must be designed to be in a process 
variable space that reflects the need for the mass transport 
mechanism to dominate system behavior. That is, the solute 
molecule must be free to diffuse without immobilization or 
any chemical reaction taking place. This solute molecule 
must also be a realistic mimic for both reactant and product 
species that would be present in the actual catalytic process 
being studied. All these factors have been taken into consid-
eration in the system representation and solution to the model 
equations. Also note that additional comments are given as 
appropriate to clarify critical steps in the algorithm selected 
for implementation in the following section.   

APPROACH/SOLUTION
It is important to reiterate that most chemical engineers—

students and professionals—are very familiar with the use of 
LaPlace Transforms for solving linear ordinary differential 
equations (ODEs). First exposure to the method is in the 
undergraduate mathematics course sequence and later in a 
process control course. Typically the ODE is transformed to 
an equivalent algebraic equation and a solution obtained in the 

LaPlace space followed by inversion back to the original space 
thereby obtaining the desired solution. Most often a table of 
transforms is involved in this process. Numerous techniques 
have been developed to extend the table when the particular 
inversion is not listed. However, they can become quite cum-
bersome and, unfortunately, inversion becomes problematic 
for some engineers leading to a shying away from using the 
LaPlace method. Fortunately, as stressed by Loney[10,11] in a 
number of published works, “There is an alternate technique, 
however, that is especially useful when a difficult inversion 
is to be performed. This method employs a concept that is 
fundamental in the theory of functions of a complex variable, 
namely the Residue Theorem.” As noted earlier, inversion 
by the Residue method is not a new concept; however it can 
be extremely useful in efficiently solving systems of non-
homogenous partial differential equations. 

The approach taken here is essentially that described by 
Loney,[10] but with a few minor modifications with appropriate 
clarification points. Following Mickley, Sherwood, and Reed,[12] 
Churchill and Brown,[13] and Dettman,[14] the variable s in

L f t( ){ } = F s( ) = e− st

0

∞∫ f t( )dt 1( )

can be interpreted as a complex number; typically s = iω. Eq. (1) 
defines F(s) as the LaPlace transform of f(t). Fortunately, F(s) is 
usually analytic (i.e., has a Taylor series expansion), except for 
singularities. This is an important point since frequently encoun-
tered classes of problems in chemical engineering are described 
by Sturm-Liouville equations and therefore it is beneficial to 
know that the transform of a solution to these equations is analytic 
for all finite s values except at the singularities (i.e., poles) of the 
system (see examples in Loney[11] and Greenberg[15]). 

Beginning with the formal, integral definition of the inverse 
transform

L−1 F s( ){ } = 1
2πi

F s( )est

γ− i∞

γ+ i∞∫ ds = f t( ) 2( )

and taking advantage of results from Complex Integral Cal-
culus that yields the Residue Theorem for the line integral in 
the complex plane, such as for Eq. (2), one obtains

 
f z( )dz = 2πi ρ jj

∑
c�∫ 3( )

where ρ j is the residue of F(s) at the pole sj. A clear explana-
tion of how one arrives at this conclusion can be obtained via 
details in Greenberg.[15] Also note that these details show that   
ρ j can be identified with coefficients in the Laurent expansion. 
We therefore have from Eqs. (2) and (3)

f t( ) = L−1 F s( ){ } = ρnh=0

∞∑ t( ) 4( )

Even though this concept is firmly grounded in the theory of 
functions of a complex variable, direct use of complex variables 
is not always required. A procedure detailed by Loney,[10] as 
replicated below, avoids the direct use of complex variables.
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First rewrite F(s) as a quotient

F s( ) = P s( ) Q s( ) 5( )
which enables us to quickly identify the singular points (poles) of F(s) and to determine if the degree of Q(s) is at least one greater 
than that of P(s). This procedure may require power series expansions of both P(s) and Q(s). If the degree of the denominator 
is at least one greater than that of the numerator, and the poles are simple (singularities of order one), then

ρn t( ) =
P sn( )
Q' sn( )

esnt 6( )

where Q9(sn) is the derivative of Q(s) at the simple pole sn. If the poles are of order m (multiple pole),

 
ρn t( ) = esnt A1 + tA2 + t2 A3

2!
+…+ tm −1Am

m −1( )!








= esnt A j

t j−1

j−1( )!j=1

m

∑ 7( )

with the Aj’s defined by

 
Aj = 1

m − j( )
dm − j

dsm − j
s − sn( )m F s( )



s=sn

j =1,2,…,m 8( )

Now given these tools, let’s proceed to solve the illustrative problem, i.e., the analysis for multiple beads (VB = volume of a 
single bead) in a well-stirred (finite volume = VM) media. By coupling the dynamic response of the bath to that for the beads, 
a method is established to determine the effective diffusivity of a solute within the bead.  Note that for multiple beads (n = # 
of equal-sized beads with radius r = R0 and porosity ε) the solution is not just simply adjusting the flux from the single bead 
analysis via the new transfer area. The eigenvalues are also a function of the number of beads (n) present and, thus, the time 
response is altered significantly. 

The analysis now proceeds as follows (since a lengthy derivation is presented only equations at key steps in the analysis are 
numbered to avoid awkwardness):

0 ≤ r ≤ Ro : ∂C
∂t

= D
r2

∂
∂r

r2 ∂C
∂r







 = D

r2
2r ∂C

∂r
+ r2 ∂2 C

∂r2









= D ∂2 C

∂r2
+ 2

r
∂C
∂r









 9( )

Using C for C(r,t), as the concentration in a bead.

@t = 0 C(r,0) = C0 ; r = 0  C(0,t) is finite or 
∂C
∂r

 = 0
@ r = R0  C(R0,t) = B(t) ; i.e., bath concentration = B(t)  
For the bath: given B(0) = 0 @ t = 0 

VM

∂B t( )
∂t

= n( )4πR0
2 −D ∂C

∂r r=R 0









 9a( )

Where D is the effective diffusivity in the bead, r is the radial dimension, R0 is the bead radius (interface with the solution), t 
is time, B(t) is the uniform concentration in the solution phase (volume is VM), n is the number of beads, each with volume VB, 
and ∈ is bead porosity. When the system reaches its steady state the concentrations in each phase are CSS and BSS. 

@ss dB
dt

= 0∴∂C
∂r

= 0 or CSS ≠ f t( )@R0CSS = BSS

thus : nC0VB ∈= VM +VB( )BSS BSS = CSS = C0VB ∈
VM +VB ∈

=
C0

4
3

πR0
3 ∈ n

VM + 4
3

πR0
3 ∈ n

CSS = C0

3VM

4πR0
3 ∈ n

+1
A' ≡ 3VM

4πR0
3 ∈ n

⇒ CSS = C0

A'+1







































10( )
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To simplify the LaPlace Transform Mapping ( L. { .. }) use a deviation variable (U) to obtain a zero initial condition: 

U ≡ C −C0 ,∂U
∂r

= ∂C
∂r

− ∂
∂r

C0 Where ∂C0

∂r
≡ 0 11a( )

therefore, ∂U
∂t

= ∂C
∂t

and ∂2 U
∂r2

= ∂2 C
∂r2

so that ∂U
∂t

= D ∂2 U
∂r2

+ 2
r

∂U
∂r









 11b( )

with IC & BC’s: as follows 
@t = 0,U = 0; 11c( )

@r = 0, ∂U
∂r

= 0; 11d( )
@r = R0 , U = B−C0 11e( )

Note: if no mass transfer limitation exists in the “external” fluid, then the area need not be corrected for ∈ .

VM

dB
dt

= 4πR0
2 −D ∂U

∂r r=R 0









 n( ) 12( )

By transforming using T = rU, it now looks as though it’s a slab problem, i.e., simpler geometry.
∂T
∂t

= r∂U
∂t

and ∂T
∂r

= r ∂U
∂r

+ U 13a( )

∂
∂r

∂T
∂r







 = ∂

∂r
r ∂U

∂r
+ U







 = r ∂2 U

∂r2
+ ∂U

∂r
+ ∂U

∂r
= r ∂2 U

∂r2
+ 2 ∂U

∂r
= ∂2 T

∂r2
13b( )

or
1
r

∂2 T
∂r2

= ∂2 U
∂r2

+ 2
r

∂U
∂r

∴1
r

∂T
∂t

= D
r

∂2 T
∂r2

⇒ ∂T
∂t

= D ∂2 T
∂r2

13c( )

With IC & BC’s as follows:
@t = 0, T = 0; 13d( )

@r = 0; T = 0; and 13e( )
@r = R0 , T = R0U = R0 B t( ) −C0( ) 13f( )

And for the bath:       

VM

dB
dt

n( )
= 4πR0

2 −D 1
r

∂T
∂r

− U
r















r=R 0

=4πR0
2 −D 1

r
∂T
∂r

− T
r2















r=R 0

14( )

with B = 0  @ t = 0

Now apply LaPlace transform; L T t,r( ){ } = T̂ s, r( ) ⇒ sT̂ = D d2 T̂
dr2

; @r = 0, T̂ = 0, andr = R0

T̂ = R0B̂ s( ) − R0

S
C0 15( )

d2 T̂
dr2

−α2 T̂ = 0 with α2 ≡ S
D

16( )

Seek a solution ⇒ T̂ = E sinhαr + F coshαr; 17( )

R0B̂ s( ) − R0

S
C0 = EsinhαR0 18( )

Note that we need B̂  before inversion can take place.
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L dB
dT









= SB̂ = 4πR0
2

VM

−D
r

∂T̂
∂r

+ DT̂
r2











r=R 0

n( ) 19( )

thus we need:

∂T̂
∂r

= d
∂r

E sinh αr[ ] = αE cosh αr; and T̂
r2

= E sinh αr
r2

20( )

substituting:

B̂ = n( ) = 4πR0
2

SVM

−D
R0

αE cosh αR0 + ED sinh αR0

R0
2









 i.e.,@r = R0( ) 21( )

So now 

EsinhαR0 = n( ) R0 4πR0
2

SVM

−D
R0

αE cosh αR0 + ED sinh αR0

R0
2









− R0C0

S

n( ) 4πR0
3

SVM

SVM

4πR0
3 n( )

EsinhαR0 + D
R0

αE cosh αR0 − EDsinh αR0

R0
2









= − R0C0

S
22a( )

E =

−R0C0

S
SVM

4πR0
3 n( )

SVM

4πR0
3 n( )

sinhαR0 − Dsinh αR0

R0
2 + αD

R0

cosh αR0











22b( )

T̂ = E sinh αR[ ]andL−1 T̂{ } = T = rU = r C −C0( ) 23( )

To accomplish the LaPlace inversion we need to use the Residue Theorem, i.e., find the poles, etc., once T̂  is expressed as 
a ratio of the form  

T̂ =
P s( )
Q s( )

=

−VM C0

4πR0
2 n( )

sinh αr 4πR0
3

VM

n( )










S− 4πR0D
VM

n( )








sinh αR0 + αD4πR0

2

Vm

n( ) cosh αR0











24( )

Thus, we need the poles to invert it! i.e., roots of Q(s) = 0

T̂ = −R0C0 sinh αr

S−
4π n( )R0D

VM









sinh αR0 + αD4πR0

2

VM

n( ) cosh αR0













S− 4πDR0

VM

n( ) = − αD4πR0
2

VM

n( ) coshαR0

sinhαR0

25( )

Using

′A =
VM

4
3

πR 0
3 n( ) ∈

= ratio of volumes

S −
3D

R 0
2 ′A

≡
−α3D

′A R 0

cosh αR 0

sinh αR 0

⇒ R 0
2 ′A S − 3D =

−3αDR 0

tanh αR 0

26a( )

tanh αR 0 =
−3αDR 0

−3D + SR 0
2 ′A

; recallS = α 2D
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tanhαR0 = −3αDR0

−3D+ R0
2 ′A α2D

26b( )

tosimplifyuseα = iλ,Dλ2 = −S;with i ≡ −1

such that tanh iλR0 = isinλR0

cosλR0

= i tanλR0 = −3λiR0

−3+ R0
2 ′A −1( )λ2

or

tanλR0 = 3λR0

3+ ′A R0
2λ2

26c( )

Note: λmR0 are the infinity of roots; with λ = 0 (S = 0) the steady state solution is obtained: Cssr.

Now, concentrate on the 
P s( )
Q s( )  term of T̂(s)

T = L−1 T̂ s( ){ } = L−1 P s( )
Q s( )












whichwillyield

P sn( )
′Q sn( )

exp sn t( ) 27( )

Recall : sm = αm
2 D = −λm

2 D, sinceαm = iλm( )

alsouse ′Q ≡ d
dS

Qand

Γ = βD = n( ) 4πR0

VM

D = 3D
R0

2 ′A
with

′A = VM

n( ) 4
3

π ∈ R0
3

and β = 3
R0

2 ′A

Note that sinh(i λm r) = i sin( λm r)  
P s( ) = −R0C0 sinh iλm r( ) = −iR0C0 sinλm r 28a( )

Q s( ) = s − Γ( )sinh iλm r( )+ iλm R0Γcosh iλm R0( ) = i s − Γ( )sinλm R0 + λm R0Γcosλm R0
  28b( )

P s( )
Q s( )

= −R0C0 sinλm r
s − Γ( )sinλm R0 + λm R0Γcosλm R0

28c( )

for sm = 0 root i.e., s.s.term( )use lim
s→ 0

sP s( )
Q s( )

lim
s→ 0

sP s( )
Q s( )

= λm
2 R0C0 sinλm r

λm
2 −β( )sinλm R0 + λm R0βcosλm R0

29( )

s → 0 & λ → 0 imply the same thing; also d
ds

= d
dλ

dλ
ds

30( )

so if we use L’Hopital’s rule to remove “indeterminate forms,” then we can use d
dλ

& λ → 0  [ dλ
ds

 terms in numerator (N) and 
denominator (D) will cancel out (always)].
Applying  L’Hopital’s rule 3 times;

lim
λ→ 0

d3

dλ3 N

d3

dλ3 D
= lim

λ→ 0

6R0C0r − λm
2 R0r

3C0( )cosλm r − 6λm R0C0r
2 sinλm r

λm
2 R0

3 − 2R0
3β− 6R0( )cosλm R0 + 6λm R0

2 + λm R0
4β( )sinλm R0

31( )
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= 6R0C0r
−2R0

3β− 6R0

= −rC0

1+ 1
3

βR0
2

recall : β = 3
R0

2 ′A

−C0r

1+ 1
′A

= − ′A C0r
′A +1

i.e., the S = 0 term. 32( )

Now for the Sn ≠  0 terms we need

P s( )
′Q s( )

33( )

′Q s( ) = d
dλ

dλ
ds

−λm
2 Dsinλm R0 −βDsinλm R0 + λm R0βDcosλm R0

 

= 1
2 ′A

2 ′A + 3( )sinλm R0 + ′A λm R0 cosλm R0
  34a( )

So :
P s( )
′Q s( )

= −2 ′A R0C0 sinλm r
2 ′A + 3( )sinλm R0 + ′A λm R0 cos λm R0{ }

= −2 ′A R0C0 sinλm r sinλm R0

2 ′A + 3( )sin2 λm R0 + ′A λm R0 sin λm R0 cos λm R0{ }
34b( )

Noting : sin 2 x =
tan 2 x

1+ tan 2 x
; cos2 x =

1
1+ tan 2 x

& sin x cos x =
tan x

1+ tan 2 x

P s( )
′Q s( )

=
−2 ′A R 0C 0 sin λ m r sin λ m R 0 1+ tan 2 λ m R 0( )

2 ′A + 3( ) tan 2 λ m R 0 + ′A λ m R 0 tan λ m R 0

34c( )

Recall:

tanλm R0 = 3λm R0

3+ ′A R0
2λm

2( ) ≡ 3λm R0

w( )
Where: w( ) ≡ 3+ ′A R0

2λm
2

P sm( )
′Q sm( )

=
− 2

3
′A R0C0 ′A 2R0

4λm
4 + 6 ′A + 9( )λm

2 R0
2 + 9 sinλm r sinλm R0

9 ′A + 9( )λm
2 R0

2 + ′A 2R0
4λm

4
34d( )

T t,r( ) = L−1 T̂ s, r( ){ } = L−1 P s( )
Q s( )












=

P Sm( )
′Q Sm( )

essmt

m =0

∞

∑ 35( )

Thus T t,r( ) = −1( ) ′A C0r
′A +1

− 2
3

′A R0C0 e− λ m
2 Dt

m =1

∞

∑
′A 2R0

4λm
4 + 3 2 ′A + 3( )λm

2 R0
2 + 9 sin λm r( )sin λm R0( )

′A 2R0
4λm

4 + 9 ′A +1( )λm
2 R0

2 












36( )
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and to find C(r,t) recall that

U ≡ C r, t( ) −C0 and T r, t( ) ≡ rU, i.e., C r, t( ) = U +C0 = T
r

+C0 37( )

1st term, i.e., ss ⇒ − ′A C0

′A +1
+C0 = C0

′A +1
= Css ,  therefore

C r, t( ) = 38( )
C0

′A +1
− 2

3r
′A R0C0 exp −λm

2 Dt( ) ′A 2R0
4λm

4 + 3 2 ′A + 3( )λm
2 R0

2 + 9 sin λm r( )sin λm R0( )
′A 2R0

4λm
4 + 9 ′A +1( )λm

2 R0
2 











m =1

∞

∑

To find the bath dynamics we use (from the problem statement): 
C R0 , t( ) = B t( ) 39a( )

B t( ) = C0

′A +1
− 2 ′A

3
C0 exp −λm

2 Dt( )
m =1

∞

∑  { }
r=R 0

39b( )

for { }
r=R 0

 [i.e., see { }  from Eq. 38 for C r, t( )] we need

sin2λm R0 = tan2 λm R0

1+ tan2 λm R0

=

9λm
2 R0

2

w( ) w( )
1+ 9λm

2 R0
2

w( ) w( )

=

9λm
2 R0

2

w( ) w( )
w( ) w( )+ 9λm

2 R0
2 

w( ) w( )

= 9λm
2 R0

2

w( ) w( )+ 9λm
2 R0

2 

Where: (w) ≡ 3+ ′A R0
2λm

2 ,  which gives: { }
r=R 0

= 9
′A 2R0

2λm
2 + 9 ′A +1( )

 

Therefore,

B t( ) = C0

′A +1
− 6 ′A C0

exp −λm
2 Dt( )

′A 2R0
2λm

2 + 9 ′A +1( ) m =1

∞

∑ 40( )

We now have a model equation for the bath dynamics as a function of physical parameters and a transport property. The sig-
nificance is that one can obtain the effective diffusivity (D) of the bead material from the time profile of the bath, B(t). Through 
comparison of the experimental data to that predicted by the model we can obtain the best estimate of diffusivity by minimizing 
the Total Absolute Average Deviation. This is accomplished using a one parameter, non-linear optimization scheme. Of course, 
graphical methods can be used as discussed in the prior analyses for a single bead. The problem statement and results presented 
here are consistent with those documented in texts by Cussler,[3] Crank,[8] and Carslaw and Jaeger.[9] Their model equations 
and closed-form solutions are those obtained via classical techniques, such as separation of variables and eigenfunction expan-
sions. Short- and long-time asymptotes are available; i.e., use of similarity variables (Deen[3] and Incropera and DeWitt[4]) as 
the initial profile is being developed, and long-time analysis when the first mode dominates (Greenberg[15]), thus using only one 
exponential term (and other workers[1,3,8,9,11,12]). 

An important point to stress is that the use of multiple beads leads to a more robust analysis given the greater magnitude of 
the bath’s response. As discussed earlier, the number of beads (n) appears in the mass balance, transfer area, and volume ratio 
terms; i.e., affecting each bead’s time-dependent boundary condition (at r = R0). Thus, their presence is reflected/felt in the 
final equations via the A9 term and λm ’s. The result is altering the steady state and overall system dynamics through both the 
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bead and bath time constants, which are related to the system 
eigenvalues through the volume ratio. Also, the associated 
eigenfunctions determine the radial distribution within each 
bead and the flux from each bead is clearly coupled with 
bath dynamics. Thus reiterating:  A simple adjustment of the 
transfer area used with the flux from the single bead analysis 
would lead to erroneous results.    

CONCLUSIONS
Presented here is an example problem that (i) illustrates the 

ease of use of many mathematical tools for solutions to perti-
nent technology problems and (ii) is applicable in a number 
of educational scenarios due to its inherent significance in 
material characterization studies and the timely insertion of 
Integrated Applied Mathematical protocols. 

Of particular focus was the use of the LaPlace Transform 
method for solutions to partial differential equations and in-
version by the residue method. Although not new concepts, 
this approach was selected to re-emphasize/demonstrate the 
usefulness of these methods in efficiently solving systems 
of moderate complexity without undue oversimplifications. 

With respect to the educational aspects, the classroom dis-
cussions can focus on coupling IAM with applications related 
to barrier property characterization, molecular sequestration, 
and enhanced therapeutic/nutraceutical delivery platforms. 
The identification and use of IAM-based computational 
models to evaluate novel functionalized materials developed 
utilizing, in particular, nanotechnology platform innovations 
is certainly a growing need in our evolving curriculums. 
Representative materials include (i) smart membranes, as 
biomimetic systems or as encapsulating materials/surfaces 
with unique barrier properties; (ii) novel chaperones for drug 
delivery and controlled release; and (iii) nano-scale entities 
that are entrapped in macro-scale matrices to produce unique 
physicochemical properties with enhanced performance 

characteristics. Whenever feasible, closed form analytical 
solutions and/or realistic asymptotes of the governing deter-
ministic model equations should be given in association with 
the more complex solutions. Guidelines for model reform
ulations—such as linearization for simplification or enhanc-
ing robustness through incorporation of additional complex 
phenomena, with their associated advanced mathematical 
representations—are also desirable deliverables that are 
within realistic objectives.
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