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Abstract 

Artificial intelligence (AI) has the potential to revolutionize the medical field with machine learning 
utilization, improving patient outcomes. Thrombotic thrombocytopenic purpura (TTP) is a life-
threatening, blood clotting disorder which is confirmed by the ADAMTS13 activity assay. The improper 
usage of ADAMTS13 and constrained resources in laboratories leads to inefficient patient care. This 
research project will result in a decision tree (DT) algorithm, aiding in efficiently diagnosing TTP. This 
machine learning (ML) support tool would reduce the over-utilization of ADAMTS13 testing and save 
lives. In Phase 1, the principal investigator coded the ML algorithm, which was developed by training and 
testing with preliminary data, producing an overall accuracy of 81%. Phase 2 curates a collection of 
patient data using the UF Health electronic health record for validation of the algorithm. Phase 3 includes 
additional testing with new data, while Phase 4 requires review of guidelines for implementation into the 
laboratory. This knowledge will help close the mortality gap for TTP and provide the framework to 
advance the development of AI support tools for various diseases. The overarching mission is to create 
the lab of the future where AI-generated decision support tools guide better diagnostic testing to aid 
clinicians in improving patient care. 

 Keywords: artificial intelligence, thrombotic thrombocytopenic purpura, machine learning, 
clinical laboratory 

Introduction 

Ever since the birth of AI in 1950, the technology has spurred countless innovations, 

created jobs that never existed prior, and introduced the possibilities of automation. With the 

rapid onset of artificial intelligence technology, a sort of “arms race” has begun within all 

industries in a multitude of ways. Not only is there a competition for efficiency and 

modernization, with AI being used to automate daily processes and alleviate costs, but also there 

is a race to produce the newest and most enticing technology for customer usage (Chen & Chen, 
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2022). Additionally, there is competition between the creators of these new AI platforms and 

governments, with growing fears concerning the privacy, safety, and security of the users. 

Despite potential misinformation and hesitation on implementation of these tools, there are 

insurmountable benefits with the application of new ML technology in many different fields. 

One area of focus is how AI has the potential to revolutionize the medical field (Haymond & 

McCudden, 2021). 

 Throughout history, greater access to information has led to pivotal discoveries in 

medicine, from cutting edge surgical developments to unimaginable lab testing methods. AI has 

the potential to create the lab of the future by optimizing clinical laboratory testing, drastically 

improving efficiency, and reducing resource misuse. ML algorithms are on the cusp of being 

implemented as tools to aid in the diagnosis of various diseases (Herman et al., 2021). There are 

different types of ML algorithms, such as decision trees (DTs). DTs are a form of supervised 

learning which makes predictions and categorizations based on a series of questions answered by 

the user. Just like how a tree branches off, the answer to each question leads to another question 

until a single outcome is reached. The benefit of using a DT, especially in medical-related topics, 

is that this ML algorithm is transparent and may provide flexibility in its predictive capabilities. 

The creators of these algorithms can easily see how a decision was made and make 

improvements at each iteration (Punchoo et al., 2021). Further, physicians with minimal 

experience in coding or with ML algorithms can view the inner workings of the DT; thus, 

allowing them to build confidence in the ML decision outcome. In contrast, other ML 

algorithms, called “black box” ML algorithms, are often difficult to understand for various 

reasons, including manufacturer propriety and complex mathematics. The accuracy of a DT is 

measured by the algorithm’s ability to properly predict the desired result when new data is 

provided (Poon & Sung, 2021).  

Following the COVID-19 pandemic, clinical laboratories continue to feel the impact of 

supply chain issues, reagent shortages, and staffing level concerns. Even though, to a certain 

degree, these problems existed prior to 2020, the pandemic only accelerated and magnified these 

issues. All across the United States, labs are short-staffed, and the current employees are facing 

more burnout and heavy workloads than ever before (Leber et al., 2022). Additionally, labs 

continue to face another dilemma: over-testing. Tests are ordered unnecessarily, which leads to 

further stretching of limited resources (Cadamuro et al., 2018). To mitigate these ongoing issues, 
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the clinical labs have begun to implement automated instruments, leverage information 

technology, and incorporate AI to increase productivity (Haymond & McCudden, 2021). This 

project analyzes the potential of these advancements for the ADAMTS13 activity assay, which is 

overused in seeking to confirm the diagnosis of thrombotic thrombocytopenic purpura (TTP).  

Thrombotic thrombocytopenic purpura is a rare thrombotic microangiopathy (TMA) and 

a medical emergency. TTP is a life-threatening blood clotting disorder in which the clots that 

form in blood vessels limit the flow of blood to vital organs, leading to severe organ damage, 

long-term health problems, and eventual death if left untreated. There are two forms of TTP, 

congenital and acquired. The focus of this project will be on acquired TTP because this is the 

most common form, comprising approximately 95% of all cases (Herrera Rivera et al., 2023). 

Generally, TMAs present with three characteristics: a drop in the platelet count, presence of red 

blood cell schistocytes (i.e., fragmented red blood cells) in the peripheral blood, and blood 

vessels with fibrin clots. This common presentation leads to a difficulty in diagnosing the 

appropriate TMA, which can potentially delay proper treatment. The etiology and 

pathophysiology of each TMA are different (Zheng et al., 2020).  

Acquired TTP involves an autoantibody that binds to the ADAMTS13 enzyme which 

inhibits its activity to breakdown von Willebrand (vWF) molecules. vWF is involved with 

primary hemostasis. In other words, it is involved with the initiation of clot formation using 

platelets. Normally, when blood vessels are injured, they expose collagen, which provides a 

binding site for platelets directly and more importantly, indirectly via vWF. vWF is a long 

biomolecule that binds to collagen and has binding sites for platelets. When platelets bind to 

vWF, they become activated. Platelet activation leads to platelet aggregation and initiates the 

coagulation cascade (secondary hemostasis). However, in order not to have excessive clot 

formation, there are multiple regulatory molecules. ADAMTS13 regulates vWF by cleaving it. 

However, in TTP, the autoantibody prevents ADAMTS13 from cleaving vWF leading to 

unregulated clot formation and the observed common clinical presentation seen in TMAs. Thus, 

the importance of ADAMTS13 testing is to distinguish between the TMAs (Sukumar et al., 

2021).  

The ADAMTS13 assay is not commonly done in hospital labs since it is a semi-manual 

test that requires maintenance, expert technical skills, and interpretation (Paydary et al., 2020). 

Hospital laboratories that do run these tests rely heavily on appropriate requests from the 
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providers to ensure unnecessary testing is not being performed due to the significant amount of 

required resources. There are several assays available. A common test method measures a 

patient’s ADAMTS13 activity by providing a synthetic vWF molecule that serves as a substrate 

and contains the specific cleavage site for the ADAMTS13. Once this molecule is cleaved by the 

ADAMTS13 in the sample, fluorescence is released, which is then measured and compared to 

determine the ADAMTS13 activity level from normal control samples, respectively (Sukumar et 

al., 2021). If the assay yields an activity level >20%, the patient is not considered for a diagnosis 

of TTP. If the activity level is <20%, additional reflex testing is required. There are generally 

two common explanations as to why a patient would have reduced activity levels. Either there is 

no ADAMTS13 enzyme, or there is activity inhibition by specific antibodies that are anti-

ADAMTS13. Other explanations exist for a low ADATMS13 level, but these are complex and 

are beyond the scope of this article. The additional reflex testing details the relative amount of 

potential autoantibodies, which would allow for the determination of the source of the reduced 

activity. In cases of TTP, the assay generally reveals activity levels less than 10-13%. With this 

disease, patients who go untreated may potentially die within 24 hours if found to have TTP, and 

testing takes a significant amount of time to be performed when it is sent out of the local 

treatment facility to be performed by a reference laboratory (Herrera Rivera et al., 2023). This is 

the main reason why the PLASMIC score was developed.  

The PLASMIC score serves as a rapid assessment tool to evaluate the potential diagnosis 

of TTP, allowing patients to begin receiving treatment while awaiting the results of the 

ADAMTS13 test (Li et al., 2018). The PLASMIC score has seven features: platelet count, 

hemolysis, absence of active cancer, absence of transplant history, mean corpuscular volume 

(MCV), prothrombin time international normalized ratio (PT-INR), and creatinine (Cr). In 

calculating the score, each feature is assigned one point, and there is a certain risk level for TTP 

associated with each total score out of seven points (Upadhyay et al., 2019). A higher PLASMIC 

score is proportional to the risk of having TTP. Although the PLASMIC score may be effective 

for patient management, lessening costs, and reducing over-utilization of tests, it is not always 

used properly for a multitude of reasons. Physicians may be unaware of how to accurately apply 

this probability assessment tool and the PLASMIC relies heavily on the user to input the 

appropriate variables. For example, in the context of the timing, scores can be falsely calculated 

if the inputted laboratory results are not within the required time frame, which is based on the 
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initial suspicion for TTP. Therefore, scores can be overestimated or potentially underestimated, 

leading to a misdiagnosis of TTP (Paydary et al., 2020). The goal of the new ML algorithm from 

this research project is to provide a tool that is less dependent on the user to guide appropriate 

diagnostic testing.  

In Phase 2 of the project, there are 21 data points being collected: patient initials, medical 

record number (MRN), age, ethnicity, sex, if the patient is deceased, if the patient came through 

the emergency room, if the patient had labs from less than 72 hours before the ADAMTS13 test, 

if the patient was given blood products before the ADAMTS13 test, platelet count, if the 

schistocytes were present and in what quantity, lactate dehydrogenase (LDH), d-dimer, 

reticulocyte count, haptoglobin, indirect bilirubin, if the patient has active cancer, if the patient 

has a transplant history, mean corpuscular volume (MCV), prothrombin time international 

normalized ratio (PT-INR), Creatinine (Cr), and the value of the ADAMTS13 test in percent 

form. It is important to note whether or not the patient was given blood products before the 

ADAMTS13 activity assay because this would provide a platelet count that is not truly 

representative. Platelets are an extremely important indicator of TTP. If the platelet count is very 

low, less than 30,000/µL, this counts as one point for the PLASMIC score. Hemolysis also 

counts as one point. The three data points that would signal hemolysis in a patient are 

schistocytes, undetectable haptoglobin, and indirect bilirubin greater than 2.0 mg/dL. Schistocyte 

presence is quantified as: few, many, moderate, or none. If haptoglobin is less than 30, this is 

considered “undetectable.” The LDH and d-dimer values are collected because certain levels are 

characteristic findings in patients with TTP. Reticulocyte count (auto-corrected) greater than 

2.5% is also indicative of hemolysis. If the patient has active cancer or a history of any 

transplants, these would both count as zero points since these events may have an effect on the 

lab values. MCV less than 90 fL, PT-INR less than 1.5, and Cr less than 2 are all indicative of 

TTP in a patient as well (Li et al., 2018). Lastly, the ADAMTS13 percentage is collected to 

check against the PLASMIC score as well as the ML algorithm for accuracy. The 72-hour 

window for collecting data is important because some of the variables and lab values being 

collected are not done on a daily basis. By having a set limit of 72 hours before the collection 

instant, this incorporates as much data as possible that is close to when the ADAMTS13 testing 

was performed, but not too distant that the values are not reflective of the patient’s current 

condition (Herrera Rivera et al., 2023). 



 
TEMAN, CLARK, VU, OVIOL & MARIN 

University of Florida | Journal of Undergraduate Research | Volume 26 | Fall 2024  

 This project is currently divided into four phases which include Phase 1: Initial algorithm 

creation, Phase 2: Data collection, Phase 3: Algorithm validation testing, Phase 4: 

Implementation into the clinical laboratory. The goal of this research is to relieve clinicians and 

physicians from the hindrances posed by over-testing, inefficiency, and resource-waste. With the 

crucial findings of this project, the research team aims to create the lab of the future by 

incorporating artificial intelligence into everyday testing processes. Overall, the utilization of AI 

as a support tool will increase efficiency in clinical laboratories, improve positive patient 

outcomes, and potentially change how medicine is practiced. 

Methods 

Phase 1: Initial Algorithm Creation 

In Phase 1 of this research project, the initial algorithm was developed. This 

DT ML model was trained and tested using in-house data as well as data from literature. The 

total dataset included 104 patients, with 30 in-house patients and 74 literature-derived patients. 

Within this original dataset, 52 patients had TTP and 52 did not have TTP. This DT algorithm 

was derived using the PLASMIC score variables serving as features. This initial algorithm had 

an overall accuracy percentage of 81% while maintaining a high negative predictive value (low 

number of false negatives).  

 

Phase 2: Data Collection 

 The patient data was collected through EPIC, a software platform built for hospitals that 

includes all patients’ medical records including tests and charting notes. One of the researchers is 

a student, so obtaining access to EPIC provided a limitation. Within the department in which the 

principal investigator on this project works, there is not a well-known process that allows 

students to view these confidential records. After several weeks, multiple training modules, and 
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compliance agreements, the student researcher had limited, but functional access to the necessary 

patient data and could begin capturing the data.  

 

 The initial data points being collected in this experiment were: patient initials, MRN, age, 

ethnicity, sex, if the patient is deceased, if the patient came through the emergency room, if the 

patient had labs from less than 72 hours before the ADAMTS13 test, if the patient was given 

blood products before the ADAMTS13 test, platelet count, if the schistocytes were present and in 

what quantity, LDH, d-dimer, reticulocyte count, haptoglobin, indirect bilirubin, if the patient 

has active cancer, if the patient has a transplant history, MCV, PT-INR, Creatinine, and the value 

of the ADAMTS13 test in percent form. These data points all relate to the variables from the 

PLASMIC score system. After collecting each of these values for a patient, there is a designated 

“Y” for yes or “N” for no listed next to the values. This answer is based on whether or not the 

patient data meets the criteria for the PLASMIC score assignment. Afterwards, the student 

Figure 1. Initial Data Points and Collection 
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researcher calculated the PLASMIC score for each patient in order to compare this manually 

calculated score to the DT algorithmic score in the future phase of the research project. 

  

 Time is a vital component in this project. The data values that are collected must be 

within 72 hours before the collection instant of the ADAMTS13 test. For the values collected 

from a non-emergency room hospital visit (i.e., transferred from an outside hospital), the goal 

was to collect the data close to the time of specimen collection for the ADAMTS13. However, 

for the values collected from the emergency room visits, the goal was to collect the earliest 

possible value from the patient’s initial admission into the ED. Even if one of the data values was 

collected one second after the ADAMTS13 collection, it was not included.  

With the expansion of this project, the data points being collected have grown to include 

AST, ALP, if the patient has liver disease, and if the patient has a form of TMA. As this phase of 

the project has progressed, the researchers have noticed a possible relation among these new data 

points and TTP. There are plans to delve further into this hypothesis in the next phase of the 

project. This data collection process is ongoing. There are still patients who are being tested for 
Figure 2. PLASMIC Score Calculation 
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ADAMTS13 and being classified as “TTP” and “non-TTP” patients. New patients will continue 

to be added to the dataset until the deadline of May 2024. 

 

Results 

With the current phase of the project being data collection, results are pending. From Phase 

1, the DT ML model was found to have overall accuracy of 81%, sensitivity of 100%, specificity 

of 69%, positive predictive value of 67%, and negative predictive value of 100%. In the creation 

of this algorithm, the main goal was to not restrict testing or miss any potential cases of TTP 

(false negatives). Thus, higher amounts of false positive cases were allowed in exchange for a 

higher negative predictive value (i.e., reduction of false negatives). With this preliminary 

algorithm testing, there is the possibility to rule out suspected TTP patients. After applying and 

testing the ML model on the new data being collected in Phase 2, the goal of Phase 3 is to 

improve overall accuracy and continue to maintain the high negative predictive value. In Phase 

4, the model will be shadow tested in a clinical environment to ensure its robustness in assigning 

TTP or assigning non-TTP. Finally, this phase also contains one of the greatest barriers: the 

official process of implementation into the clinical laboratory setting. This will require resources 

Figure 3. New Data Points and Collection 
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to evaluate the DT ML model’s regulatory status which includes medical device and Clinical 

Decision Support Software guidelines. 

Discussion 

The ML model should only be used as a decision support tool for physicians and does not 

aim to replace their clinical expertise. Although AI has revolutionary applications in healthcare, 

uncertainties surrounding the ethics of ML systems have arisen. Some providers fear that there 

may be risks associated with allowing AI to aid in diagnosing patients, potentially leading to 

errors in management and treatment. With any field of research, there can be no exact guarantees 

of efficacy; however, the studies referenced in the introduction have demonstrated the success of 

AI systems in other disciplines. With the implementation of ML into the clinical laboratory, one 

of the greatest challenges to overcome will be resistance by those who are unfamiliar with AI 

tools. It is vital that procedures are also established to educate clinical laboratory staff on these 

new technologies and ensure that clinicians feel comfortable using these tools on a daily basis.  

TTP is a rare, yet fatal disease, therefore the development of a diagnostic tool to increase 

efficiency and positive patient outcomes is crucial. Additionally, the ADAMTS13 test is scarce 

among hospitals and other clinical laboratory facilities. The implications from the findings of this 

project will impact many lives and will be applied to a wide variety of other diseases. Currently, 

there are very few projects relating to applying AI to TTP. This research is unique because of the 

type of machine learning algorithm, the features, and the binary system being utilized to leverage 

transparency. Many clinicians are wary of ML and its lack of transparency. The algorithm 

utilized in this project, DT, is crafted in a manner that allows users to see every single decision 

and outcome made by the system.  

The ultimate goals for this project are to provide the following: develop a pipeline system to 

integrate ML learning to assist clinical teams with decisions that can improve patient outcomes, 

cost-effectiveness, reduce over-utilization of valuable laboratory resources and inefficiency. 

Implementing and improving decision support tools for clinical teams can alleviate decision 

fatigue, improve workflow and assist in difficult clinical cases with regard to guiding appropriate 

diagnostic testing selection.  We hope to push the boundaries and create the lab of the future by 
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incorporating AI into testing procedures. Specifically, if this research project can work towards 

reducing the mortality gap with AI for TTP, then the application to other diseases is limitless. 
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