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Abstract 
Background: Parkinsonism is an umbrella term encompassing several disease pathologies that share 
common motor symptoms. The most prevalent diagnosis is Parkinson’s disease, followed by multiple 
system atrophy, and progressive supranuclear palsy. Early detection and differentiation between types of 
Parkinsonism remain an issue in clinical practice. 
Objective: MRI has the potential to aid the diagnosis of Parkinsonisms. A major hurdle is combining and 
harmonizing the data across different MRI vendors. The objective of this study was to determine if a full 
width half maximum gaussian spatial filter helps harmonize data sets collected from different scanners. 
Methods: Using 17 different MRI scanners, data was collected from 1,002 subjects. First, the data were 
spatially filtered using different sizes (no filter, 2mm, 4mm, 6mm). Data were then preprocessed and 
transformed into Montreal Neurological Institute (MNI) space. Next, support vector machine learning 
tested the training and validation accuracy of predicting diagnosis at each spatial filter setting.  
Results: The training and validation data for weighted sensitivity, specificity, and accuracy were similar 
for all filter conditions. Differences between the weighted sensitivity, specificity, and accuracy of the 
training groups for all filter sizes were less than 0.1 and less than 0.2 for validation groups. 
Conclusions: Training and validation predictions did not differ across spatial filters, suggesting the 
accuracy of the algorithm is robust at different spatial filter sizes. In conclusion, the size of the spatial 
filter applied to diffusion MRI data does not result in a change in the outcome of the machine learning 
approach. 
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Introduction 

Parkinsonism is a broad umbrella term that encompasses several different diseases and 

pathologies that share common motor symptoms. The three most prevalent types include 

Parkinson’s disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy 

(PSP). The introduction of a non-invasive biomarker for the different types of Parkinsonism can 

help improve the diagnosis accuracy (Hughes et al., 2002). Finding an algorithm that 

distinguishes between typical (PD) and atypical (MSA and PSP) Parkinsonism could help 

decrease the number of misdiagnoses and hopefully allow for earlier medical intervention. The 

main interest is in evaluating magnetic resonance imaging (MRI) as a potential biomarker for 
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differential diagnosis of PD and atypical Parkinsonism. As a first step towards that goal, a spatial 

filtering procedure was tested to determine if this method can enhance the harmonization of the 

MRI datasets from different MRI scanners. 

This project reanalyzed data from another study (Archer et al., 2019) which included 

imaging from over 1000 subjects from 17 different MRI machines. Different spatial filter 

conditions (no filter, 2mm, 4mm, 6mm) were applied to these images before performing free-

water calculation on them. The researcher hypothesized that the weighted sensitivity, specificity, 

and accuracy would all improve with increasing filter size. With 6mm being the largest filter size 

tested, it was predicted to be the best filtering method.  

Most studies that have examined diffusion MRI data are single-site studies. Incorporating 

multiple sites, cohorts, and scanners into the same analysis pipeline would allow for further 

generalizability and scalability. Of 190 studies published in the American Journal of 

Neuroradiology, Siemens accounts for 38% of scanners used followed by 32% General Electric 

(GE), 26% Philips, and 4% other manufacturers (Ramezanpour et al., 2019). Changes in the 

volume of some parts of the brain, like the thalamus and globus pallidus (Plitman et al., 2021), 

have been reported with the use of different manufacturers, emphasizing the importance of 

normalization of data among different scanners. Still, there are a few studies, such as the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), that have included Siemens, GE, and 

Philips even though there has not been a systematic assessment of how to combine these data in 

quantitative analysis pipelines.  

When an MRI is acquired there is a reconstruction algorithm that moves the data from K-

space to image space. Most analysis procedures process data in image space. Differences in 

voxel size and some unique filtering can occur in the reconstruction algorithm. In the current 

study, the 3dmerge function in the software package Analysis of Functional Neuroimages 

(AFNI) (Cox, 1996) was used to merge and edit the data sets, such that unique filters were 

applied to each data file. Our goal was to determine if adding a spatial filter could impact the 

outcome of a machine learning approach to predicting a diagnosis based on images from 

participants with PD, MSA, and PSP. A spatial filter, specifically a full width half maximum 

gaussian filter (Ashburner & Friston, 2001), harmonizes the noise across different datasets 

collected from different MRI scanners. 



EVALUATING SPATIAL FILTREING ON DIFFUSION MRI DATA HARMONIZATION IN PARKINSONISM 
 

 
 

University of Florida | Journal of Undergraduate Research | Volume 24 | Fall 2022  

Methods 

Data sources  

This was an international study utilizing 17 different MRI scanners across eight cohorts 

in the United States, Germany, and Australia (including the University of Florida, Penn State 

Hershey Medical Center, Medical University Innsbruck, Northwestern University, University of 

Michigan, Parkinson’s Progression Marker’s Initiative, and 4 Repeat Tauopathy Neuroimaging 

Initiative). A total of 1002 participants were tested with 278 being healthy controls, 511 with PD, 

84 with MSA, and 129 with PSP. There were 608 male and 394 female subjects with a total 

average age of 65.05. The average Movement Disorder Society Unified Parkinson’s Disease 

Rating Scale part III (MDS-UPDRS III) scores per group reported controls with a score of 3.42, 

PD subjects with 30.15, MSA subjects with 51.13, and PSP subjects with 40.65 (Archer et al., 

2019). This demonstrates that MSA is the diagnosis with the most severe motor deficits of those 

being tested.  

Patients with Parkinsonism have all received a diagnosis from a movement disorder 

specialist which is the current gold standard. Control participants self-reported no history of 

neurological problems. All participants provided written informed consent which was approved 

by institutional review boards.  

Data preprocessing and normalization  

The preprocessing and normalization of data followed a previous study by Archer and 

colleagues (Archer et al., 2019). Custom MATLAB scripts were used to get free-water and free-

water corrected fractional anisotropy (FAT) images for the subjects, then each image was 

inspected to ensure that the entire brain was clearly visible and that artifacts did not exist. This 

included inspection for evidence of stroke, warping errors, and more.  

Prior to nonlinear registration to Montreal Neurological Institute (MNI) space, a linear 

registration was performed. This was accomplished using Advanced Normalization Tools 

(ANTs) (Klein et al., 2009). A rigid transformation was applied to all the images to move them 

from subject space to MNI space where the template brain was the Human Connectome Project 

FA template. Linear registrations were followed with nonlinear warping (Symmetric 
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Normalization in ANTs). The nonlinear transform used the same mean Human Connectome 

Project FA template.  

Regions of interest 

All regions and tracts of interest were in MNI space. The region of interest template 

(Archer et al., 2018) included a total of 17 regions in the basal ganglia, midbrain, thalamus, 

cortex, and cerebellum. Forty-three white matter tracts were also analyzed using existing 

tractography templates, which include the sensorimotor area tract template (S-MATT) (Archer et 

al., 2018), transcallosal tractography template (TCATT), and a cerebellar white matter atlas (van 

Baarsen et al., 2016).  

Machine learning approach 

There were four conditions for this study based on the full width at half maximum 

(FWHM) gaussian filter that was applied to the image. The conditions were no filter, 2mm, 

4mm, and 6mm. Scores from the MDS-UPDRS III, sex, and age for the PD, MSA, and PSP 

subjects were considered.  

Diffusion-weighted MRI (dMRI) data for weighted sensitivity, specificity, and accuracy 

were analyzed. Each combination of variables was used in parts of a support vector machine 

(SVM) learning algorithm in Python. Participant data were randomly assigned to either training 

or validation sets and then split into five subgroups for five-fold cross-validation. This trains the 

algorithm and checks the generalizability of the system’s performance. 

Results 

Data for participants with MSA/PSP vs PD and MSA vs PSP were compared. Training 

(80% of the data) and validation (20% of the data) were similar for the filter conditions, so this 

model could transfer to an independent data set. The training data of all four filter sizes for 

weighted sensitivity, specificity, and accuracy ranged from 0.82-0.94, 0.89-0.96, and 0.86-0.94 

respectively. The validation sets had small ranges for weighted sensitivity (0.81-0.96), specificity 

(0.82-1.00), and accuracy (0.83-0.95) as well. 

Figure 1 shows the weighted sensitivity, specificity, and accuracy with no filter applied in 

both training (A,B,C) and validation (D,E,F) sets. Figures 2, 3, and 4 show the same data with 
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the 2mm, 4mm, and 6mm filters applied respectively. Figure 5 has the weighted accuracy for all 

the filter conditions in both training and validation sets.  

 

 

Figure 1. Weighted sensitivity, specificity, and accuracy with no filter applied to the 

imaging for both training (A,B,C) and validation (D,E,F) data sets.  
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Figure 2. Weighted sensitivity, specificity, and accuracy with the 2mm filter applied 

to the imaging for both training (A,B,C) and validation (D,E,F) data sets.  

 

Figure 3. Weighted sensitivity, specificity, and accuracy with the 4mm filter applied 

to the imaging for both training (A,B,C) and validation (D,E,F) data sets.  
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Figure 4. Weighted sensitivity, specificity, and accuracy with the 6mm filter applied 

to the imaging for both training (A,B,C) and validation (D,E,F) data sets.  

 

 

Figure 5. The weighted accuracy for training and validation sets of all four filter 

conditions.  

Discussion 

The key finding of this study was that 2mm, 4mm, and 6mm filters did not impact the 

harmonization of diffusion MRI data. It does not seem that there was a difference in the machine 

learning approach outcome whether no filter or the 2mm, 4mm, or 6mm filters were applied. 

Training 

Validation 
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This was shown by similar results (ie. weighted sensitivity, specificity, and accuracy data) for 

each of the tested filter conditions compared to a control group with no filter applied. The small 

range of results for both training (less than 0.1) and validation (less than 0.2) groups indicate that 

the SVM was working well and could be generalized to an independent data set. The 

implications of this are twofold. First, the differences in MRI scanners need to be considered 

when looking at data collected from multiple sites. Second, there is still a gap in knowledge 

about how to accommodate these differences.  

There are a few reasons why the filtering method may not impact the data. First, the free-

water algorithm already included some normalization processes because the values are between 0 

- 1. This algorithm estimates the fractional volume of the extracellular compartment and assigns 

the fractional volume a value between 0 - 1. It is possible that adding a spatial filter to this 

algorithm does not improve the multisite nature of the data. Second, when an image is acquired 

in k-space there are reconstruction algorithms that transform the data to image space which is 

typically the output of an MRI scanner. The reconstruction algorithm is proprietary information 

from the company that manufactures the MRI scanner, and thus there can be some filtering that 

already occurs without the researcher’s knowledge. Thus, adding an additional spatial filter may 

not have an impact if the reconstruction algorithm has a filter built-in. Third, it is possible that 

the filtering procedure tested here is not sufficient and that another method is needed to improve 

the harmonization of the imaging data across sites.  

A multi-site study using the same scanner software version (VE11C) and the same pulse 

sequences across sites found that free-water imaging has promise in distinguishing between types 

of Parkinsonism (Mitchell et al., 2019). The study by Mitchell and colleagues did not find a site 

effect or group-by-site interactions suggesting that free-water imaging performed on matched 

scanners is robust. Another multi-site study included data collected across at least 8 different 

sites to look at progression markers of Parkinson’s disease over time. The researchers used a 

two-compartment model to calculate the signal attenuation before standardizing it to MNI space 

and found that site did not have an effect on their results (Burciu et al., 2017). Finding a way to 

harmonize inter-site variability is an ongoing problem due to different scanner manufacturers, 

software versions, and pulse sequences. The ComBat method (Johnson et al., 2007) is one 

example of a procedure that has been used for harmonization of diffusion and other imaging data 
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from across sites. ComBat is a tool that limits inter-site variability by removing batch effects, but 

it does require considerable data from a site to model and covary the site differences. This 

method has less use in a clinical setting when substantial a priori data does not exist. Although 

ComBat is typically used for genomic data, it has been reportedly used on diffusion tensor MRI 

imaging successfully (Fortin et al., 2017). Additionally, another study used FWHM gaussian 

filters of sizes 2-30mm (with increments of 2mm) to harmonize functional MRI data and 

reported an ideal filter size of 8mm (Mikl et al., 2008). However, the sample size (20 

participants) was notably smaller than that of this study, only included healthy adults, and was 

performed at a single site.  

In conclusion, the present study has determined that using a 2mm, 4mm, or 6mm full 

width half maximum spatial filter is not sufficient to harmonize data from different MRI 

scanners. Future work could look at the impact of 8mm or larger FWHM filters on diffusion 

MRI data. Since there was no effect from the filter sizes examined in this study, it may be 

possible that an optimal filter not tested here would optimize harmonization in a future study.  
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