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Abstract  

In the last few hundred years, mathematicians have been attempting to describe the topological and 

algebraic properties of mathematical knots. Regarding the study of knots, there exists a disconnect 

between examining a knot’s mathematical and physical definitions. This is due to the inherent difference 

in the topology of an open-ended physical knot and a closed mathematical knot. By closing the ends of a 

physical knot, this paper presents a method to break this discontinuity by establishing a clear relation 

between physical and mathematical knots. By joining the ends and applying Reidemeister moves, this 

paper will calculate the equivalent mathematical prime or composite knots for several commonly used 

physical knots. In the future, it will be possible to study the physical properties of these knots and their 

potential to expand the field of mathematical knot theory. 
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Introduction 

In the subject of mathematics, the field of knot theory has become important in 

understanding key results in microbiology, chemistry, and physics, among others. Knots are just 

one-dimensional curves in three-dimensional space that do not intersect themselves anywhere. 

Knot Theory is the study of these curves, their topological properties, and the ways to manipulate 

them (Adams, 1994).  Normally, mathematicians develop this theory within the realm of 

mathematics and apply it to real-world problems. The direction is usually constantly flowing 

outward from mathematics to physics and other sciences (Hirsch, 1996). However, what if it is 

possible to use principles of physics to aid in the creation of new results in knot theory? In this 

paper, a physical knot is defined as any knot that is commonly tied in the real world using rope 

or a similar material. Some examples include the bowline knot, the overhand knot, and the clove 

hitch. Physicists have studied many quantities of knots, such as the efficiency of retaining the 
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rope tensile strength (Patil et. al., 2020), and this paper proposes that it may be possible to use 

some of these quantities to aid the field of mathematical knot theory. 

To understand the importance and applications of knot theory, the origins and motives must 

be discussed. Physical knots have always been used for different tasks such as climbing or 

sailing, as well as in traditional cultures around the world. (Turner & van de Griend, 1996) 

However, the first rigorous study of knots was done by Carl Friedrich Gauss when he developed 

the Gauss linking integral for computing the linking number of two knots (Ricca & Nipoti, 

2011). One of the first major applications of knot theory came from Lord Kelvin who suggested 

that atoms might consist of knotted vortex tubes of the ether, with each element corresponding to 

a different knot (Thomson, 1867). Furthermore, with Vaughan Jones’ discovering his namesake 

Jones polynomial in 1984, interest from the mathematical community in knot theory continued to 

increase. Edward Witten discovered a new framework for the Jones polynomial, which made use 

of Feynman path integrals, and new applications of knot theory arose (Sossinsky, 2002). Finally, 

in 2012 Farhi et. al. found that the Alexander polynomial could be used to create “a concrete 

quantum money scheme based on superpositions of diagrams that encode oriented links with the 

same Alexander polynomial.”  

As stated in Colin C. Adam’s “The Knot Book,” knot theory also has many applications in 

chemistry. Potential applications to chemistry formed the initial motivation for developing knot 

theory and starting in the 1980s many researchers used the subject to realize important results in 

chemistry (Adams, 1994). According to Sumners, knot theory can be used to examine the 

various spatial isomers of molecules. Moreover, knot theory is also used to represent the 

flexibility of these long molecules (Sumners, 1987). Additionally, knot theory has many 

applications in biology, particularly in DNA topology (Adams, 1994). In Moore and Vazquez 

(2020), coherent band surgery, conversion of a knot into a two-component link, and non-

coherent band surgery, which is similar to coherent band surgery except the orientations are not 

retained, is used in the study of low-dimensional topology, particularly in DNA topology. 

There are plenty of examples of uses from knot theory pertaining to other sciences and to the 

physics of commonly used knots. In a study by Patil et. Al (2020), the researchers used 

optomechanical experiments to determine mechanical stability based on the changing color from 

mechanical deformations. They could predict stability in frequently encountered knots and 

tangles. Additionally, Santos et al. (2019) offered a good overview of where the current state of 
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knot research lies. Hitch theory examines the frictional and mechanical forces involved in tying 

hitches. From a psychological approach, knots have been commonly used in puzzles and to test 

mathematical and spatial reasoning. Since knots are complicated to move and understand, the act 

of tying and untying them can become a good test for robotics algorithms. 

Despite all the different types of knot research, there is a major research gap in terms of 

finding knot diagrams of physical knots. According to Patil et. Al (2020), “… there currently 

exists no comprehensive mathematical theory linking the topological and mechanical properties 

of knotted elastic structures.” As far as the researchers can tell, there does not exist direct 

research studying the idea of joining the ends of a physical knot and determining the knot 

diagram of any physical knot. The goal of this paper is to transcribe many physical knots into a 

mathematical knot diagram to help lay the groundwork for future research into the relationship 

between physical knots and mathematical knot theory. 

Methodology 

This investigation aims to apply known mathematical knot theory to physical knots and 

explore the connections between virtual mathematical knots and physical knots. Two knots are 

ambient-isotopic if it is possible to continuously distort one knot into the other without breaking 

or passing through itself (Armstrong, 1979). Topologically speaking, all physical knots are 

ambient-isotopic to an untangled line of the same material. This can be proven by taking one end 

of a physical knot and pushing the end into itself in reverse to eliminate any crossings 

(Armstrong, 1979). In order to evaluate the physical knot in a mathematical context, the 

researchers take both free ends and stitch them together. This will create a mathematical knot. 

After manipulating this new mathematical knot using legal Reidemeister moves, the KLO (Knot-

like Objects) software (Swenton, n.d.) aids in proof of knot equivalence between this knot and a 

known prime or composite mathematical knot.  

The Transformation of the Physical Knot 

This process of joining the two free ends of the physical knot assumes that the two ends are 

on the outside of the knot. In the case of physical knots where at least one end is within the 

enclosed knot, for example the bowline knot, joining the ends will create a new crossing. Since 

the ends are free to move, this crossing can be over or under a part of the knot; thereby creating 
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two distinct knot diagrams per crossing. In this instance, the table will include both 

representations. 

Reidemeister Moves and Establishing Equivalence 

A Reidemeister move proof establishes equivalent prime knots for each physical knot 

diagram, as seen in Reidemeister’s 1927’s, “Elementare Begründung der Knotentheorie.” 

 The Reidemeister moves consist of 3 types: Type I (Figure 1)- the twisting or untwisting of a 

strand which will add or subtract a crossing; Type II (Figure 2)- poking the strand through 

another, which adds or subtracts 2 crossings; and Type III (Figure 3)- moving a crossing over a 

separate strand, which does not change the number of crossings.  

 

 

Figure 1. Reidemeister Type I (Reidemeister, 1932) 

 

Figure 2. Reidemeister Type II (Reidemeister, 1932) 
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Figure 3. Reidemeister Type III (Reidemeister, 1932) 

To construct a proof, the researchers will concurrently attempt to calculate several knot 

invariants and manipulate real rope to help guide the Reidemeister move sequence. By 

calculating the knot invariants, the list of possible prime and composite knots that may be 

equivalent to any given mathematical knot diagram becomes more feasible.  The physical knot 

follows the structure of the recorded knot diagram. To emulate the form of a mathematical knot, 

free ends of physical knots must be joined. The alteration of the physical knot yields a 

mathematical model which can be manipulated in a firsthand manner. The rope is simply to be 

used as a guide to expedite the construction of the proof, where the sequence of Reidemeister 

moves leads to the conclusion of equivalence. Reidemeister moves performed firsthand in this 

physical manner will be legal, and therefore the proof extracted is valid.  

Frank Swenton’s KLO program aids in standardizing the process of simplifying knots. The 

program provides the simplification process using Reidemeister moves, and the program is the 

source of the virtual knot diagrams. This program cross-examines the physical manipulation 

mentioned above, where a physical rope emulates the mathematical knot in manipulation. Here, 

the program checks the proof in a virtual setting.  

Results 

Table 1 below details the findings of this investigation. The physical knots are organized in 

alphabetical order. The rightmost column contains the name and a graphic of the original, 

unaltered knot. The middle column contains the Reidemeister moves used to transform the knot, 

with the type of move indicated by Roman numerals I, II, and III. The altered regions of the knot 

are highlighted in brown. In the rightmost column is the equivalent prime or composite knot with 

the crossing number and index number underneath, respectively. 
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Table 1. Conversion of Knots from Physical to Mathematical 
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Clove Hitch: 
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Figure 8: 
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Handcuff Knot: 
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Lanyard Knot: 
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Orvis Knot:
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Sheepshank Knot: 
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Table 1. Conversion of knots from physical to mathematical. This contains the knots’ proofs of equivalence.  
aColumn 2: The brown highlight denotes the part of the knot that is going to be altered. 
bColumn 3: The first number indicated number of crossings in the knot, and the last number indicates the index 

number, or identifying number according to the Rolfsen knot table. 
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Discussion 

These results are the beginning of creating a link between mathematical and physical knots, 

which could further researcher’s understanding of how real knots relate to each other. Since only 

12 physical knots were studied in this paper, it would be best to take caution in any conclusions 

that are drawn based solely on this research. Even so, this paper is a foundation from which 

future research can be conducted. The fact that there exists at least two physical knots that, when 

their ends are joined, are ambient isotopic to the unknot is a promising lead. 

Upon examination, some of the knots that are equivalent to the unknot, such as the 

sheepshank and slip knot, have similar physical characteristics. Specifically, the sheepshank knot 

shown is a particularly weak variation (Verrill, 2006) and the slip knot is normally a temporary 

measure, as pulling on one end will cause it to untie itself (Turner, 1996). The knots’ tendency to 

untie themselves could have a connection to both the unknot mathematical model and the weaker 

nature of the knot in a physical application, considering factors such as friction, tension, and 

elasticity explored by Patil et. Al. (2020). The unstable nature of the crossings in the two knots 

could possibly be connected to the higher instance of Reidemeister move Type II in the proof, 

due to the poking of a strand through another resembling a slipping motion. Perhaps the similar 

utility of these knots is shown in their mathematical equivalent, though this needs further 

research. 

However, there still exists knots which are equivalent to the unknot but have high strength 

and stability. Three knots in this investigation fit this description – the clove hitch, Alpine 

butterfly knot, and handcuff knot. Considering the uses of the knots as detailed by Verrill (2006), 

it is apparent that there are other objects which intersect loops in the knot, such as a carabiner in 

the Alpine butterfly knot, hands which intersect the handcuff knot, and a bar which intersects the 

clove hitch. The intersecting object would secure part of the knot, acting as a barrier to one or 

more loops, and this may partially differentiate the strength of these three knots from the weaker 

sheepshank and slip knots. 

Concerning the different types of Reidemeister moves, Type III is the move that appears least 

in this investigation, but it is present in proofs of knots that can be used to hold human weight 

(Verrill, 2006). The bowline and Alpine butterfly knot are two such cases. Although not 

confirmed, the integrity of knots could possibly be gleaned through examining the properties and 

implications of the Reidemeister moves. 
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The knots which are not equivalent to the unknot constitute slightly over half of the 

investigation. One knot in particular, the bowline, is one of the most diverse knots in application 

and is relatively simple to tie but still very reliable (Verrill, 2006). Although it is not clear why 

this is the case, it would be useful to examine the characteristics of the equivalent mathematical 

knots in conjunction with physical properties like those investigated by Patil et. Al. (2020), 

including twist fluctuations and circulations, which may be evident in the geometry of equivalent 

mathematical knots in column three as well as the original knot configurations in column one of 

Table 1. 

Small changes to a mathematical or physical knot will lead to a change in the equivalent knot 

as well. With further understanding of the relationship between these knots, these changes could 

be predicted and understood. Whether it be in understanding the physical properties of real knots 

or the properties of mathematical knots, the knowledge of how both relate to each other will 

assist research in both fields.  

Limitations and Delimitations 

While visual matching is a workable technique, it certainly is not the optimal way to do it. 

For more certain matching between physical and mathematical knots, calculations of the 

invariants of the physical knot’s prime counterpart will greatly improve finding the matching 

knot. Unfortunately, time constraints made this option unfeasible. Calculating the invariants 

proved challenging, and with a short deadline, visual mapping was chosen to have example knots 

completed in time. In the future, invariant calculation should be the technique for matching 

physical and mathematical knots. Not only would this remove human error present in visual 

matching, but it would also make searching easier. Invariants of the existing prime knots can be 

entered into a searchable database, and then entering the calculated invariants will lead to a much 

faster result.  

While the techniques outlined here work for most knots, there are some limitations to what 

knots can be converted. Certain knots, such as the bowline, have one of their ends terminating 

inside of the knot itself. These knots cannot have their ends simply connected to form a 

mathematical knot like other knots. The solution used was to create two mathematical 

equivalents, one where the end exited the knot by going over the rest of the knot, and one where 

the end goes under the rest of the knot. This solution is workable, but it leads to two different 

equivalent knots and therefore no true equivalent like with the other knots. Additionally, this 
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method can only be used on simpler knots. Matching the knots is done by comparing to the 

Rolfsen knot table visually, which grows almost exponentially as the number of crossings 

increases. The number of prime knots with 11 or more crossings makes it infeasible to find the 

equivalent using these methods. While it is still possible, the time investment with this method 

leaves it in dire need of improvement. This restriction is only present with the visual matching 

techniques. While creating a database such as the one outlined in the previous paragraph would 

be a large initial time investment at 11 and greater crossings, once it is created the time cost for 

larger knots is removed entirely.  

Conclusion 

In summation, the motive behind our research project was to fill the gap between physical 

knots and mathematical knots.  Through studying the many types of non-intersecting curves in 

3D space, mathematicians and physicists have been able to make incredible breakthroughs in 

science. With the use of legal Reidemeister moves, we were able to find the prime mathematical 

knot of 12 different physical knots. With this contribution to the body of knowledge, if one our 

knots is ever seen in nature, then there is an easy and accessible proof to convert it into a 

mathematical knot. The door to an interdisciplinary approach to knot theory is now open, and the 

opportunities for knot theory have increased ten-fold. 
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