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Abstract 

Network sampling identifies a subset of nodes and/or edges from a network, producing an induced graph. 

Exploration-based sampling algorithms grow the induced set from an initial node by iteratively traversing 

and accumulating unvisited neighboring nodes from the original network. Many exploration-based 

sampling algorithms suffer drawbacks that limit the sum of degrees of visited nodes and thus the number 

of high-degree nodes visited. Furthermore, a strategy may not adapt adequately to volatile degree 

frequencies throughout the original network architecture, which influences how deep into the original 

network an algorithm could sample. This paper proposes a novel, exploration-based network sampling 

algorithm called caterpillar quota walk sampling (CQWS) inspired by the caterpillar tree and is compared 

to four other algorithms. CQWS generates a spread model as its sample by visiting the highest-degree 

neighbors of previously visited nodes. For each previously visited node, the top proportion of highest-

degree neighbors creates the next set of caterpillar trees. Tunable and trainable parameters allow CQWS 

to maximize the sum of the degrees of the induced graph from multiple trials when sampling dense 

networks. Test scenarios included both sparse and dense networks evaluated over all the algorithms. 

Results show CQWS performance was best over dense networks. Evaluating the degree sum results, 

CQWS consistently outperformed other algorithms when sampling both sparse and dense networks. 

 Keywords: spread model, network sampling, exploration-based sampling, caterpillar tree, lobster 

graph, caterpillar quota walk sampling

Introduction 

Complex networks abundant within different community structures have far-reaching 

applications in modeling complex systems such as social media circles, food webs, international 

trade, and the World Wide Web (Ribeiro & Towsley, 2010).  Theoretically, a network is 

synonymous with a graph from graph theory. This paper defines a network 𝐺 = (𝑉, 𝐸), a nodes 

(vertex) set 𝑉, and edge set 𝐸. Each edge connects and establishes some relationship between 

two nodes in 𝑉. This definition specifically pertains to a simple undirected network, which is 

studied in this paper. For various applications, a node may present a social media account, a port 

in a shipping network, or cells in a biological  network (Maiya & Berger-Wolf, 2010). An edge 

often stipulates a specific type of connection between two entities represented by nodes. For 
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example, an edge may represent the strength of an activation potential across two neurons, the 

internet connection between two servers, or the status of social media connections (followers and 

friends). Depending on the application, both nodes and edges may carry qualitative and 

quantitative attributes to fulfill the network model’s purpose. As opposed to regular graphs such 

as lattices and tessellation-based graphs, networks that model real-world phenomenon can have 

high variations in edge density, node density, clustering density, and other quantifiable attributes 

that delineate community structures throughout the entire network (Ribeiro & Towsley, 2010).  

Network sampling establishes one way to analyze and mine a vast network for meaningful 

data. By excising a smaller subset of nodes and edges, executing algorithms and other 

computations on a representative subgraph eliminates computational and scalability constraints 

faced by the original network. Random sampling from statistical experiments can be 

conceptually transferred to network sampling as random node (RN) and random edge (RE) 

network sampling algorithms. For a budget of n nodes in a sample, RN selects n random nodes 

from 𝑉, while RE selects enough edges from 𝐸 until the number of unique endpoints of edges 

(nodes) equals n (Ribeiro &Towsley, 2010).  

However, large networks seldom have all nodes and edges initially accessible or at least 

feasibly reachable (Rozemberczki et al., 2020b).  A common reason is saving extremely large 

networks in relatively slow-acess storage mediums.Furthermore, organizations use systems with 

limited memory and therefore can only load and view a small proportion of a stored network. 

This renders RN and RE unusable. Since a relatively small subset of 𝑉 is feasibly accessible, 

sampling algorithms using graph traversal from already available nodes offer a more viable 

solution. Futrhermore, such exploration-based sampling algorithms can generate a sample 

proximal to specific nodes of interest. For example, if a new business seeks a location to set up 

shop, examining nodes (i.e. locations) close and reachable to nodes of interest (i.e. consumer 

communities) facilitates choosing the optimal location. The quality of sampled nodes can be 

evaluated by a metric that summarizes connectivity, clustering, degrees, or other characteristics 

of the sample. Many algorithms follow this general heuristic of starting at a single node 𝑠 and 

iteratively adding unvisited nodes 𝑣 in 𝑉 adjacent to nodes already in the sample (Rozemberczki 

et al., 2020b). To compare different exploration-based sampling algorithms, establishing some 

time or resource bound 𝐵 per sample creates an even field for comparisons. In this paper, a fixed 

sample size n is the bound, setting 𝐵 = 𝑛. 
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The network sampling algorithms in this study are inspired by spread models from a network 

context. Conceptually, a spread model can simulate the spread of influence or flow of 

information from node to node (Kuikka, 2018). In a network, a spread model is simply an 

induced subgraph 𝑆 ⊆ 𝐺 produced by traversing nodes from initial node 𝑠.Across many 

applications, node degree constitutes a value of interest. The degree of a node 𝑢, symbolically 

deg(𝑢), is defined as the number of adjacent nodes to 𝑢. The set of adjacent nodes to 𝑢is the 

neighborhood of 𝑢, symbolically 𝑁(𝑢). Applying the concept of a spread model delivers insight 

on how to reach the highest-degree nodes proximal to s. 

Two problems current exploration-based network sampling algorithms face are addressed in 

this paper. First, targeting high-degree nodes in S was not deeply addressed during the 

development of many sampling algorithms (Rozemberczki et al., 2020b). In many real-world 

applications, node degree constitutes a value of importance (Rozemberczki et al., 2020b).  Actual 

meaning ranges from someone’s social circle to the number of highways intersecting a city. 

Targeting high-degree nodes provides direct benefit when sampling networks that model these 

applications. Second, a network sampling algorithm may linger in proximity to the start node 𝑠 

rather than reach nodes farther away (Rozemberczki et al., 2020b). This renders 𝑆 a weaker 

representation of 𝐺 and forfeits opportunities to discover higher degree nodes farther away from 

𝑠. Therefore, a larger spread of edge distances between sampled nodes and 𝑠 indicates greater 

reachability by a tested algorithm. 

This paper proposes a novel algorithm that attempts to fix these two issues. Caterpillar Quota 

Walk Sampling (CQWS) selects new nodes by degree. For each previously visited node 𝑣, 

unvisited neighbors in 𝑁(𝑣) that rank at or above a certain percentile by degree are visited. At 

each iteration, each newly visited node branches into new caterpillar trees rooted at 𝑣. Sample 𝑆 

thus becomes a lobster graph constructed from recursive branching of caterpillar trees off one 

another. Four other exploration-based sampling algorithms besides CQWS are analytically 

compared in performance regarding the two aforementioned problems,discussed in the 

Preliminaries section. 

Preliminaries 

Definitions and Notations 
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definition 1. 𝐺 = (𝑉, 𝐸) is a network or graph with nodes (vertices) in vertex set V and 

edges in edge set E. 

definition 2: S is a sample of G, which is an induced subgraph derived by sampling a subset 

of V and all edges with both endpoints in V. 

definition 3: s is the chosen start node for a sampling algorithm based on traversing G and 

automatically in S initially. For the purpose of this paper, 𝑠 = 0. 

definition 4: 𝑑𝑒𝑔(𝑣) is the degree of node v, the number of edges incident to v. 

definition 5: 𝑁(𝑣) is the neighborhood of node v, the set of nodes adjacent to v. 

definition 6: 𝑅𝑁(𝑣) is the neighborhood of node v ranked by degree from highest to lowest. 

definition 7: 𝑑𝑖𝑠𝑡(𝑢, 𝑣) is the distance between nodes u and v, the number of edges in any of the 

shortest paths with endpoints u and v. 

definition 8: A caterpillar tree is a tree that requires every vertex to be within 1 edge of a 

central path. 

definition 9: A lobster graph is a graph such that can be transformed into a caterpillar tree 

after removing any set of leaf nodes. 

 

 

 

 

 

 

 

 

 Figure 1. Caterpillar tree with 20-node backbone 

(central path) and p1=0.50 probability of edge 

offshooting off the backbone 

Figure 2. Lobster graph with 20-node backbone 

(central path) and p1=0.50 probability of edge 

offshooting off the backbone and p2=0.25 of offshoot 

edges >1 edge from backbone 
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Review of Other Network Sampling Algorithms  

random walk sampling. Simple random walk (SRW) offers a computationally inexpensive 

method of network sampling. For each previously visited node 𝑣, choose any adjacent node 𝑢 ∈

𝑁(𝑣) with uniform probability (Li et al., 2019). SRW naturally predisposes bias towards higher 

degree nodes. However, the lack of any optimization criteria limits SRW on how to visit the next 

node. 

common neighbor aware random walk sampling. A variant of random walk samplers, the 

common neighbor aware random walk (CNARW) focuses on reaching nodes less likely to be 

visited by SRW. For each previously visited node 𝑣, a random number 𝑞 | 0 < 𝑞 < 1 is selected. 

The value 𝑞𝑢𝑣 = 1 −
𝐶𝑢𝑣

min{deg(𝑢),deg(𝑣)}
   is a threshold, where 𝐶𝑢𝑣 is the number of common 

neighbors between u and v (Li et al., 2019). A common neighbor 𝑤 to 𝑢 and 𝑣 is any node 

adjacent to both 𝑢 and 𝑣. The developed strategy helps the algorithm traversefrom s faster than 

SRW. This makes the distance distribution of 𝑆 less likely to be constrained to a small value. 

snowball sampling. Snowball sampling expands outward with a new layer of visited nodes 

per iteration. For 𝑘 ∈ ℕ, each node 𝑣 from the previous iteration selects k adjacent, unvisited 

nodes (Goodman, 1961).a random subset of 𝑁(𝑣) with size 𝑘 is selected following a uniform 

probability distribution (Heckathon, 1997). Visiting a fixed number of neighbors per node per 

iteration presents a major drawback. In a dense network, a small 𝑘 decreases the number of 

opportunities to sample large-degree nodes within 𝐺.However, a large 𝑘 visits large-degree 

nodes more often while increasing computational demand. For each node 𝑣 in the previous 

iteration, all neighbors are exhaustively visited when 𝑘 > deg(𝑣). The specific value of 𝑘 

becomes pointless when all neighbors of 𝑣 are visited. 

community structure expansion sampling. Using an optimization strategy, community 

structure expansion sampling (CSES) explicitly targets higher degree nodes during each iteration 

to expand the sample outwards from the current set of visited nodes. The algorithm uses an 

expansion factor 𝑋(𝑆) =
|𝑁(𝑣)|

|𝑆|
 (Maiya & Berger-Wolf, 2010). The algorithm expands the current 

sample 𝑆 at a maximal rate while targeting high-degree nodes per iteration.Each iteration 

chooses the next node to visit that will append the most unvisited neighbors to 𝑆. This 
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combination makes CSES perform well when evaluated by the degree sum and distance variance 

metrics. 

frontier sampling. A multidimensional variant of random walk, frontier sampling (FS) 

operates as a group of 𝑚 dependent SRW traversal operations (Ribeiro & Towsley, 2010). 

Suppose that queue 𝐿 contains 𝑚 nodes in 𝐺, symbolically 𝐿(𝑣1, 𝑣2, … , 𝑣𝑚). Select one node 𝑢 ∈

𝐿 with probability 
deg(𝑢)

Σ∀𝑣∈𝐿 deg(𝑣)
 where. Replace u with any neighbor 𝑤 ∈ 𝑁(𝑢) and repeat the 

process until the sample reaches the required size (Ribeiro & Towsley, 2010). As a probabilistic 

algorithm, the node in 𝐿 with maximum degree is most likely, but not guaranteed, to be visited 

over another node with lesser degree. Since FS essentially acts as RWS distributed across 

separate sampling processes taking turns, this algorithm is omitted from the experimental 

procedure for redundancy. 

The time complexity of each algorithm from the experiment is given in Table 1. The time 

complexity is focused on each visited node during each iterative step rather completion of a 

sampling. 

 

 

Proposed Method: Caterpillar Quota Walk Sampling 

CQWS expands the graph, incorporating additional nodes by selecting from the upper end of 

𝑅𝑁(𝑣), where v represents each node visited in the previous iteration. The selection criteria 

depends on two thresholds 𝑞1 and 𝑞2 where 0 < 𝑞1 < 𝑞2 < 1. During each iteration, CQWS 

partitions 𝑅𝑁(𝑣) into two halves and selects the largest possible subset 𝑄1 from 𝑅𝑁(𝑣) such that 

Table 1. Time complexity of each algorithm per visited node per step.   

Network Sampling Algorithm Time Complexity Per Visited Node Per Step 

Random Walk Sampling O(1) 

Common Neighbor Aware Random Walk Sampling O(V) 

Snowball Sampling O(1) 

Community Structure Expansion Sampling O(V2) 

Caterpillar Quota Walk Sampling O(VlogV) 
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Σ𝑢∈𝑄1

𝑛 deg(𝑢) ≤ (Σ𝑣∈𝑁(𝑣) deg(𝑣)) ∗ 𝑞1. Repeat this division of 𝑅𝑁(𝑣) into two halves, but a 

larger subset of highest nodes in 𝑅𝑁(𝑣) named 𝑄2 are selected such that Σ𝑢∈𝑄2

𝑛 deg(𝑢) ≤

(Σ𝑣∈𝑁(𝑣) deg(𝑣)) ∗ 𝑞2. Remove any nodes from 𝑄2 already in 𝑄1.More concisely, 𝑄2 ≔ 𝑄2\ 𝑄1 

is executed after initially filling the 𝑞2 quota. In synopsis, 𝑄1 and 𝑄2 fulfill quotas for two 

consecutive groups of  nodes in 𝑅𝑁(𝑣) such that 
Σ𝑢∈𝑄1 deg(𝑢)

Σ𝑣∈𝑆 deg(𝑣)
< 𝑞1 and 

Σ𝑢∈(𝑄1∪𝑄2)

Σ𝑣∈𝑆
< 𝑞2. Each 

iteration,each node 𝑢 ∈ (𝑄1 ∪ 𝑄2) joins sample S.  However, nodes in 𝑄2 become inactive for 

future iterations and their neighbors do not undergo the algorithm. While each node in 𝑄1that 

each branches into new caterpillar trees, each node in 𝑄2 becomes an endpoint of a permanent 1-

edge offshoot from its parent node 𝑣 . Figure 3 compacts the proposed algorithm into 

pseudocode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology 

The hardware used for this work consists of 10th generation Intel i7 core and 16 GB of RAM, 

and computations were executed on a WSL Ubuntu 20.04 terminal. All code was written in 

Python version 3.8.5. To evaluate each algorithm, two synthetically generated randomnetworks, 

𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), were sampled. Each network is a gnm random graph, a variant 

Figure 3. Caterpillar quota walk sampling algorithm (CQWS) 

 
 
𝑆 ≔ {𝑠}  
𝑄1 ≔ {𝑠}  
𝑄2 ≔ {𝑠}  
FOR v IN 𝐿: 
     Create subset 𝑄1 from 𝑅𝑁(𝑣). 
     FOR u IN 𝑄1: 
          𝑆 ≔ 𝑆 ∪ 𝑢 
          𝐿 ≔ 𝐿 ∪ 𝑢  
     Create subset 𝑄2 from 𝑅𝑁(𝑣). 
     FOR u IN 𝑄2: 
           𝑆 ≔ 𝑆 ∪ 𝑢  
REPEAT UNTIL |𝑆| = 𝐵 
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of Erdős–Rényi graph. Each network is a random selection out of all possible networks with n 

nodes and m edges. The parameters for 𝐺1 are 𝑛 = 1000, 𝑚 = 5000 and 𝐺2 are 𝑛 = 1000, 𝑚 =

500000, respectively. With equal node count, the disparity in the number of edges by a factor of 

|𝑉2|

|𝑉1|
= 100 contrasts the performance of algorithms between sparse and dense networks. Initially, 

SnowballSampler and CaterpillarQuotaWalkSampler instances have undergone parameter tuning 

(Rozemberczki et al, 2020b; Qin, 2020). Each algorithm exceptCQWS was executed on 𝐺1 and 

𝐺2 via instances of classes from the Python library littleballoffur (Rozemberczki et al, 2020a). 

Each sampling algorithm per network had been evaluated with two scoring metrics, degree sum 

and distance variance, yielding a total of four sampling executions per algorithm per metric per 

network. Scores are reported as a 4 × 2 tables, namely Table 1 and Table 2 under Results. The 

tables correspond to sampling on 𝐺1 and 𝐺2, respectively. 

Scoring Metrics 

degree sum. This is the frequency, or hit rate, of high-degree nodes. Since the exact degree 

dividing high-degree and low-degree nodes is subjective and application-specific, the sum of 

degrees for all 𝑛 sampled nodes, Σ𝑢∈𝑆
𝑛 deg(𝑢), is employed as a holistic, application-agnostic 

measurement to indicate how strongly an algorithm targets higher degrees.  

distance variance. This evaluates the spread of nodes in 𝑆  by computing the distance variance 

𝑉𝐴𝑅(𝑑𝑖𝑠𝑡(𝑢, 𝑠)), where 𝑑𝑖𝑠𝑡(𝑢, 𝑠) is the edge countin any shortest path between 𝑢 and 𝑠. The 

term “distance” here thus generally refers to the minimum edge count between any sampled node 

and 𝑠. This  gauges how deep an algorithm can reach into 𝐺 from 𝑠. Other statistics such as the 

mean, median, and mode may also convey the reachability of an algorithm. However, the variance 

is a more stable and more representative option than the three aforementioned point estimates.  The 

mean is susceptible to outliers, as a sampled node extremely far from s gives an inaccurate value 

of the true center of distances. The median, although more robust against outliers than the mean, 

is determined by the ordinal position of the middle element in the distance distribution andfails to 

measure the spread of distances. . Similarly as a point estimate, the mode also does not incorporate 

the distances of all sampled nodes and does not capture the spread of distances. Compared to the 

three aforementioned metrics, computing the variance accounts for all values in the distance 

distribution and retains consistency across multiple trials. 
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Parameter Tuning 

Parameters for snowball sampling and CQWS have each been tuned by an 

NetworkSamplerTuner instance from NetworkSampling.py (Qin, 2020). For snowball sampling, 

the only tunable parameter is 𝑘. The considered test range for 𝑘 was all positive integers in 

[2,20]. With CQWS, the tunable parameters are 𝑞1 and 𝑞2.  The test range for 𝑞1 consisted of the 

Cartesian product {0.00, 0.01, 0.02, 0.03, … , 0.25} × {0.00, 0.01, 0.02, 0.03, … , 0.25}, and the 

test range for 𝑞2 consisted of the Cartesian product {0.25, 0.26, 0.27, 0.28, … , 0.50} ×

{0.25, 0.26, 0.27, 0.28, … , 0.50}. Tuning was done for each algorithm-metric pair before 

sampling. Both algorithms utilized GridSearchCV from the Scikit-Learn library. 

Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Degree distribution of sample from sparse 

graph (G1) using CQWS 
Figure 5. Degree distribution of sample from dense 

graph (G2) using CQWS 

Figure 6. Degree distribution of sample from sparse 

graph (G1) using RWS 
Figure 7. Degree distribution of sample from dense 

graph (G2) using RWS 
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Figure 8. Degree distribution of sample from sparse 

graph (G1) using CNARW 

Figure 9. Degree distribution of sample from dense 

graph (G2) using CNARW 

Figure 10. Degree distribution of sample from sparse 

graph (G1) using SnowballSampler 

Figure 11. Degree distribution of sample from dense 

graph (G2) using SnowballSampler 

Figure 12. Degree distribution of sample from sparse 

graph (G1) using CSES 

Figure 13. Degree distribution of sample from dense 

graph (G2) using CSES 
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For each algorithm and each network from {𝐺1, 𝐺2}, a degree distribution histogram is plotted. 

These histograms are given in Figures 4-13. Each histogram visually approximates the  center 

and spread of degrees of sampled nodes. Across five algorithms and networks, there are 5 × 2 =

10 histograms. Note that each histogram uses data based on nodes accumulated over 10 trials on 

the same network. 

 

 

 

In Figures 14-15, 2-sample quantile-quantile (QQ) plots are shown for each pair of network 

sampling algorithms that contain CQWS. These plots compare the skeweness of CQWS with 

every other algorithm and highlights whether CQWS has an advantage or disadvantage in 

sampling nodes of higher degree relative to another algorithm. Note that both x-axis and y-axis 

use degree rather than quantile of each degree distribution as units. 

Results 

 

 

 

 

 

Figure 14. 2-sample QQ plots of degree distributions of CQWS (x-axis) and other sampling algorithms (y-axis) 

sampled on sparse graph (G1) 

Figure 15. 2-sample QQ plots of degree distributions of CQWS (x-axis) and other sampling algorithms (y-axis) 

sampled on dense graph (G2) 

Table  2. Scores for each sampling algorithm sampled on sparse network (G1) 
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Discussion 

 CQWS achieved the highest degree sum in 1000-node sample averaged over 𝑛 = 10 trials 

compared to all other sampling algorithms for 𝐺2 (Table 3). Due to its trainable parameters 

relevant to node selection, a narrow window (𝑞1 = 0.07, 𝑞2 = 0.29) of highest degree 

neighbors that CQWS visits each iteration is ideal for sampling networks that have dense 

connections (high degree density).  However CQWS performed more poorly against other 

algorithms when sampling the sparse 𝐺1 network (Table 2) relative to the dense 𝐺2 network 

(Table 3). For 𝐺1, CQWS performed worse than CNARW by a larger margin than the amount of 

improvement in degree sum over any of the other three algorithms in Table 2. While for 𝐺2, 

CQWS outperformed all algorithms in degree sum and held the largest margin of improvement 

against its runner-up, Random Walk, compared to any other algorithm and its corresponding 

runner-up in Table 3. This performance disparity is further evidenced by comparing Figures 14 

and 15, based on a repeat of the same sampling trials for 𝐺1 and 𝐺2 shown in Tables 2 and 3. As 

Figure 14 shows, CQWS only outperformed one algorithm (Snowball Sampling) on 𝐺1. When 

evaluated on the 𝐺2 network in Figure 15, CQWS clearly outperformed all other algorithms 

except CNARW. A QQ plot displays a right-skewed distribution if points start above the 45° 

line, close in towards the line, and veer back up along the positive x-axis. Right skewness 

conveys that the algorithm on the y-axis obtained a lower mean degree (and other measures of 

center of a distribution) across the 10 sampling trials than CQWS. Specifically, this phenomenon 

occurred when comparing CQWS against CSES in Figure 14 and against each algorithm besides 

CNARW in Figure 15. 

Comparing CQWS against itself across both 𝐺1 and 𝐺2 also affirmed CQWS’s suitability for 

dense networks relative to sparser networks. The degree histogram of CQWS for 𝐺2 in Figure 5 

Table  3. Scores for each sampling algorithm sampled on dense network (G2) 
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showcases a center of mass leaning more to the right (i.e. towards a higher degree) than the 

degree histogram of CQWS for 𝐺1 in Figure 4. 

For distance variance, CQWS achieved better performance than half of the other algorithms 

when sampling 𝐺1, evidenced in Table 1. However,  CQWS performed the worst when sampling 

𝐺2 as shown in Table 2. In a dense network, there can be high-degree neighbors of visited nodes 

that are closer to the start node and have not been discovered earlier. By targeting high-degree 

nodes, there would be some backtracking during sampling because high-degree nodes become 

more closely packed. This indicates a trade off between degree sum and distance variance.  

Conclusion 

Comparing the degree sum of several exploration-based network sampling algorithms against 

the proposed CQWS yielded deep insight into how both criteria and the connectivity of a 

network affects the sampling behavior in a network. This paper not only compared the 

performance of four existing algorithms against a newly proposed one, but the results also 

suggest how algorithms applying strategic criteria such as CQWS and CNARW outperformed 

algorithms using purely probabilistic rules to sample nodes.   Although snowball sampling 

employs a tunable parameter, the algorithm still performed poorly because it is not deterministic 

(i.e., sampling the same network twice yields different results). Despite also being 

nondeterministic, CNARW employs an intelligently designed rule for choosing nodes to visit 

and thus performed better than the random walk and snowball sampling. Finally, CQWS has the 

advantage of incorporating the most tunable parameters and being a deterministic algorithm. 

For future work, the most viable improvements on the algorithm would be using counting 

sort algorithm to order neighboring nodes by degree. This will improve the worst-case time 

complexity from 𝑂(𝑉𝑙𝑜𝑔𝑉) to 𝑂(𝑉). Even this improved time complexity for CQWS does not 

exceed the worst-case time complexity of some other algorithms (random walk and snowball 

sampling). However, the effective performance of CQWS on targeting high-degree nodes can be 

exploited as a second step in a combination of sampling algorithms. In the first step, a 

computationally cheaper algorithm can quickly generate a preliminary sample on which CQWS 

uses for parameter tuning. The tuned CQWS model can then performantly generate a larger 

second sample to identify much more high-degree nodes in the locality of a node of interest. 

With its focus on collecting high-degree neighbors, CQWS is suited for tasks such as 
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recommending social media connections, identifying local communities of resources online, and 

prioritizing logistical tasks drawn from a dependency graph.  
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