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Abstract 
Toll pricing has long been recognized as an effective approach to manage traffic congestion. This project 

includes the analysis of transportation systems by mathematically modeling the impact of pricing on the 

collective decision-making of drivers via Nash games. The objective is to develop an optimal pricing 

strategy that maximizes shared transport companies’ revenue while minimizing drivers’ time costs.  A 

Nash game theoretic framework is used to tackle the long-term challenge on how to properly capture the 

nonlinear nature of traffic users’ behavior. Two types of traffic pricing models were developed; a base 

case with a fixed demand and a more realistic case using elastic demand. The base case was established 

for users who vary their routing choices but not their transportation modes. The second model is more 

appropriate for companies with users who optimize both their routing and choice of transportation based 

on the pricing policy of the system. Optimal pricing policies can be determined by convex formulations of 

optimal system traffic assignment problems on simple networks with different origins and destinations. 

The numerical examples show formulation feasibility and provide insight on how the company can have a 

positive impact on both its revenue and users’ time cost by modifying its pricing strategy. The models 

also show how pricing affects road users’ decisions under different parameter settings. The paper 

demonstrates that a shared transport company can increase revenue by determining key links and properly 

capturing users’ behavior while reaching the maximum level of revenue over time cost ratio  

Keywords: Nash games, shared transport, traffic assignment, pricing optimization, driver’s  

     decision-making 

 

Introduction 

Toll pricing has long been recognized as one of the best methods to improve traffic flow and 

congestion in urban networks. This method is also applied by shared transport companies for 

pricing their services. Nowadays, real-time shared transport companies gather data to 

revolutionize the transportation industry for a more centered and optimized transportation 

structure (Bertsimas et al., 2019). A challenge in pricing shared transport stems from the 

nonlinear nature of traffic users’ behavior as a response to the deployed pricing scheme. To 

better capture this, the models in this paper were developed while adopting Nash games as a 

framework. By using this theory, the model searches for a user equilibrium that can satisfy traffic 

system constraints. The Nash games in this setting consist of n + m players in a non-cooperative 

system where n users search their best routes in a network with m origin-destination pairs. This 
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framework will allow the models to better simulate the players’ strategy changing behavior. If 

the company has selected a strategy, mantains it, and the network users do not improve their 

objective by modifying their strategies, then the current solution set constitutes a Nash 

equilibrium.  

There have been some proposed bilevel programming approaches to determine toll levels on 

predetermined links without capacity constraints, using both elastic and fixed demand (Yang & 

Zang, 2003). Congestion pricing models have suggested that the drivers’ strategic routes 

modifications do contribute to congestion reduction in traveling with lower price levels (May & 

Milne, 2000). While taking into account queueing and congestion conditions, other exploratory 

bilevel programming approaches have also been made (Yan & Lam, 1996). Modifications of 

these models, while considering multiclass within the pool of network users, were also 

developed to capture different economic status within the users (Yang & Zang, 2002). These are 

not sufficient to completely capture all classes within the network since drivers’ economic status 

tend to be already addressed by the choice of transportation mode. These publications based their 

framework on the idea that there is a lead player and then the followers, which does not reflect 

users’ real behavior in this system. The upper level of their models aimed to minimize total 

network travel time while the lower level aims to simulate the route choice behavior of all users. 

Those ideas can also be modified and implemented to verify if shared transport companies 

can maximize their revenue while improving social welfare. This paper shows the development 

of a Nash equilibrium problem in which the overall objective of the game is to determine optimal 

link price levels and flows of the system. It examines a model formulation for fixed and elastic 

demand. The first player’s objective is to maximize revenue while the second player aims to 

minimize the total network’s users cost.  

There is a lot of  additional background research on traffic equilibrium assignment and the 

calculation of link costs as functions of the link flows (Bell & Cassir, 2002). Other authors have 

used pricing models for modeling multimodal traffic with focus on parking pricing strategies 

(Zheng & Geroliminis, 2016). Continuous studies have been made about the application of game 

theory into a risk-averse equilibrium traffic assignment formulation problem (Bell & Cassir, 

2002). 

For better understanding of the models, it is important to present all variables and parameters 

taken into consideration in this problem (Table 1). 
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Table 1. Model notation   

Variables & Parameters Units Description 

A - Set of links 

W - Original-destination (O-D) pairs 

M - Set of transportation class 

𝑅𝑤 - Set of paths (O-D), 𝑤 𝜖 𝑊 

𝑃𝑘 - Term priority coefficient (k=1,2) 

𝜏 - Time value coefficient 

𝛿𝑎𝑟 - =1 if route r uses link a 

=0 if otherwise 

𝛾𝑟𝑤 - = 1 if route r is between O-D pair W 

=0 if otherwise 

𝑣𝑎
𝑚 veh/hr. Flow on link a of class m 

𝑓𝑟
𝑚 veh/hr. Traffic flow on route r of class m 

𝑞𝑤
𝑚 veh/hr. Fixed demand for each (O-D) pair by class m 

𝑦𝑎
𝑚 $ Price charged by class m and link a 

𝑑𝑤
𝑚 veh/hr. (O-D) demand variable by class m 

(Yang & Zhang, 2003)   

 

The following section examines the game-theoretic models for pricing scheme optimization. 

Later, numerical examples are solved with a simple programming approach using Generic 

Algebraic Modeling System (GAMS). A final section with further analysis of the results, 

demonstrating the feasibility of the methods and models developed is provided. Conclusions are 

presented in the final section. 

Determination of optimal price levels on predetermined links 

Let G (N, A) be a network defined by a set of nodes (N) connected by a set of directed links 

(A). Also, let 𝑡𝑎
𝑚(𝑣𝑎

𝑚, 𝑣𝑎
�̃�, �̃�  ≠ 𝑚) be a continuous, convex and strictly increasing function of 

all flows 𝑣𝑎
𝑚 (Yang & Zhang, 2003). This function represents the total travel time per choice of 

transportation m 𝜖 𝑀 and link a 𝜖 𝐴 used. Then, as shown in eq. F1, this function is composed by 

three terms. Let 𝛼𝑎
𝑚 be the free flow travel time in link a 𝜖 𝐴  by transportation mode m 𝜖 𝑀. 

Furthermore, it is important to consider the impact of congestion of the entire flow 𝑣𝑎
𝑚 on the 

rest of the drivers. Thus, 𝛽𝑎
𝑚 will be the time-congestion impact coefficient on link a 𝜖 𝐴 by class 

m 𝜖 𝑀. In addition, assume all types of transportation affect each other. 
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Then, as shown in eq. F2, the overall link usage cost will be a dependent function  

𝐶𝑎
𝑚(𝑡𝑎

𝑚 , 𝑦𝑎,𝑚), which is the sum of both monetary and time cost. Therefore, eq. F2 defines a 

function composed by F1 and the price charged 𝑦𝑎,𝑚. 

𝑡𝑎
𝑚(𝑣𝑎

𝑚, 𝑣𝑎
�̃�, �̃�  ≠ 𝑚) = 𝛼𝑎

𝑚(1 + 𝛽𝑎
𝑚𝑣𝑎

𝑚) + ∑ 𝛽𝑎
�̃�𝛼𝑎

�̃�𝑣𝑎
�̃�

�̃�≠𝑚

 (F1) 

𝐶𝑎
𝑚(𝑣𝑎

𝑚, 𝑦𝑎
𝑚; 𝑣𝑎

�̃�, �̃�  ≠ 𝑚) = 𝜏 ∗ 𝑡𝑎
𝑚(𝑣𝑎

𝑚, 𝑣𝑎
�̃�, �̃�  ≠ 𝑚) + 𝑦𝑎

𝑚 (F2) 

To develop the upcoming models, bilevel programs that determined system optimal toll 

levels while considering link capacity constraints were examined (Yan & Lam, 1996). This 

model could be adapted into a Nash game formulation, in which the shared transport company 

and the users are players of a system. Moreover, this paper is not considering link capacity 

constraints since 𝛽𝑎
𝑚 already takes into account the congestion impact on the initial link traveled 

time. Finally, the models are formulated from the perspective of the company and users of the 

network. 

Model A 

The first model is formulated considering fixed demand across all (O-D) pairs and 

transportation modes. The objectives of this model are to capture the company’s (player 1) and 

network users’ (player 2) behavior.  

player 1 strategy formulation. The first section represents the company’s objective and 

constraints: 

𝑚𝑎𝑥
𝑦,𝑣,𝑓

 ∑ ∑ 𝑦𝑎
𝑚  ∗

𝑀

𝑚=1𝑎𝜖𝐴

𝑣𝑎
𝑚(𝑦)         (1) 

S.T.   𝑦𝑎,𝑚
𝑚𝑖𝑛 ≤  𝑦𝑎,𝑚 ≤  𝑦𝑎,𝑚

𝑚𝑎𝑥      ∀ 𝑎 𝜖 𝐴, ∀ 𝑚 𝜖 𝑀         (2) 

These equations represent the objective and systematic boundaries of player 1 (company). 

The above pricing policy is under a single constraint, defined by a lower bound 𝑦𝑎,𝑚
𝑚𝑖𝑛 and upper 

bound 𝑦𝑎,𝑚
𝑚𝑎𝑥 (2), representing the assumption that there are market regulations to the price 

charged by shared transport companies. Here 𝑣𝑎
𝑚(𝑦) is the solution of the following parallel 

program (player 2’s strategy).  

player 2 strategy formulation. This represents the users’ equilibrium problem response to 

the company’s pricing policy decision (player 1’s strategy).  
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𝑚𝑖𝑛
𝑣,𝑓

 ∑ ∑ ∫ 𝐶𝑎
𝑚(𝜃, 𝑦𝑎

𝑚; 𝑣𝑎
�̃�, �̃�  ≠ 𝑚)𝑑𝜃

𝜈𝑎
𝑚

0

𝑀

𝑚=1𝑎𝜖𝐴

 

S.T.    

     (3) 

∑ 𝑓𝑟
𝑚 ∗ 𝛾𝑟𝑤

𝑟𝜖𝑅𝑤

= 𝑞𝑤
𝑚     ∀ 𝑤 𝜖 𝑊, ∀ 𝑚 𝜖 𝑀 (4) 

𝑣𝑎
𝑚 =    ∑ 𝑓𝑟

𝑚 ∗ 𝛿𝑎𝑟

𝑟𝜖𝑅𝑤

       ∀ 𝑎 𝜖 𝐴, ∀ 𝑚 𝜖 𝑀 (5) 

𝑓𝑟
𝑚 ≥ 0     ∀ 𝑟 𝜖 𝑅𝑤, ∀ 𝑚 𝜖 𝑀 (6) 

This section of the model formulates the objective of minimizing overall users’ total travel 

time cost eq. F2 (3). The model guarantees that all fixed demand will be satisfied (4), by using 

𝛾𝑟𝑤 to define the relationship between routes and all O-D pairs. Constraint (5) defines the 

objective function’s variable 𝑣𝑎
𝑚 by determining the link flow from the route flow 𝑓𝑟

𝑚. It also 

uses 𝛿𝑎𝑟 to determine which links are part of each route. This will determine the optimal user 

flow for each link a 𝜖 𝐴.  

As mentioned before, Model A is formulated using fixed demand. To include demand 

elasticity, it is important to remember that both supply and demand must be considered (Yang & 

Zhang, 2003). They developed another model using a bilevel programming approach that could 

find the optimal price levels for tolls considering elasticity (Yang & Zhang, 2002). 

Model B  

In the next model, the shared transport company (player 1) is considering demand elasticity. 

Therefore, this model is formulated considering a variable demand across all (O-D) pairs and 

transportation modes. 

player 1 strategy formulation. The first section represents the company’s objective and 

constraints: 

𝑚𝑎𝑥
𝑦,𝑑,𝑣,𝑓

  𝑃1 ∑ ∑ ∫ 𝐷𝑤
𝑚−1

𝑑𝑤
𝑚(𝑦)

0

(𝜔)𝑑𝜔 +  𝑃2

𝑀

𝑚=1𝑤𝜖𝑊

∑ ∑ 𝑦𝑎
𝑚 ∗

𝑀

𝑚=1𝑎𝜖𝐴

𝑣𝑎
𝑚(𝑦) (7) 

S.T.   𝑦𝑎,𝑚
𝑚𝑖𝑛 ≤  𝑦𝑎,𝑚 ≤  𝑦𝑎,𝑚

𝑚𝑎𝑥      ∀ 𝑎 𝜖 𝐴, ∀ 𝑚 𝜖 𝑀   (8) 

The objective function (7) aims to maximize the revenue while considering the demand 

function 𝐷𝑤
𝑚(𝜇𝑤

𝑚) for each O-D pair w 𝜖 𝑊. 𝐷𝑤
𝑚(𝜇𝑤

𝑚) is a strictly increasing, convex and 

continuous function of the cost 𝜇𝑤
𝑚 (Yang & Zhang, 2002). Therefore, 𝐷𝑤

𝑚−1
(𝑑𝑤

𝑚) defines the 
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inverse of the demand function; the lower the cost, the more demand the company will get, but at 

the same time, the less revenue it might generate. To further develop the relationship between 

these two terms, the objective function also contains 𝑃𝑘 (k= 1,2) which gives the company the 

flexibility to give more priority to a term than the other. Here 𝑣𝑎
𝑚(𝑦) and 𝑑𝑤

𝑚(𝑦) are the solutions 

of the following parallel program (player 2 strategy). 

player 2 strategy formulation. This represents the users’ equilibrium response to the 

company’s pricing policy decision (player 1’s strategy). 

𝑚𝑖𝑛
𝑑,𝑣,𝑓

 ∑ ∑ ∫ 𝐶𝑎
𝑚(𝜃, 𝑦𝑎

𝑚; 𝑣𝑎
�̃�, �̃�  ≠ 𝑚)𝑑𝜃 − 

𝜈𝑎
𝑚

0

𝑀

𝑚=1𝑎𝜖𝐴

∑ ∑ ∫ 𝐷𝑤
𝑚−1

𝑑𝑤
𝑚

0

(𝜔)𝑑𝜔 

𝑀

𝑚=1𝑤𝜖𝑊

 

S. T. 

(9) 

∑ 𝑓𝑟
𝑚 ∗ 𝛾𝑟𝑤

𝑟𝜖𝑅𝑤

= 𝑑𝑤
𝑚     ∀ 𝑤 𝜖 𝑊, ∀ 𝑚 𝜖 𝑀 (10) 

𝑣𝑎
𝑚 = ∑ 𝑓𝑟

𝑚𝛿𝑎𝑟

𝑟𝜖𝑅𝑤

   ∀ 𝑎 𝜖 𝐴, ∀ 𝑚 𝜖 𝑀 (11) 

𝑓𝑟
𝑚 ≥ 0     ∀ 𝑟 𝜖 𝑅𝑤 , ∀ 𝑚 𝜖 𝑀 (12) 

This entire formulation uses the same boundaries as the player 2’s strategy section in 

Model A, but the objective function (9) represents the user equilibrium of the system, which 

balances the cost per demand function 𝐷𝑤
𝑚−1

 and the total cost of the users.  

Numerical Examples 

All networks are composed by nodes connected by links with a certain demand for each pair 

of nodes. The model allows for drivers to make decisions to minimize the total cost of network 

usage. The users’ strategy section for Model A was tested for two different network examples 

and found interesting feasible results that will have an impact on how transportation users behave 

in response to different pricing policies. 

Simple Network- Example 1 

For this example, the network is presented in Figure 1 and the problem formulation is solved 

using all specified parameters in Model A. The results were obtained using a predetermined 

pricing policy as seen in Table 2. Both objective function parameters (𝛽𝑎
𝑚 and 𝛼𝑎

𝑚) values are 

shown in Table 3 and 4, respectively. Finally, the demand for each O-D pair is shown in Table 5. 
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Figure 1.Simple Network for fixed demand problem. 

 

Table 2. Pricing policy input for example 1 
 

1 2 3 

Car $2.50 $1.70 $3.10 

Bicycle $0.50 $0.60 $0.80 

Scooter $1.10 $1.20 $1.10 

 

Table 3. Time impact coefficients for example 1 

𝛽𝑎
𝑚 1 2 3 

Car 0.11 0.09 0.11 

Bicycle 0.09 0.08 0.07 

Scooter 0.10 0.16 0.12 

 

Table 4. Free flow travel time in min for example 1 

𝛼𝑎
𝑚 1 2 3 

Car 4 3 5 

Bicycle 6 4 6 

Scooter 8 7 8 

 

Table 5. Demand for example 1 

𝑞𝑤
𝑚 A-B A-C B-C 

Car 20 30 35 

Bicycle 5 6 4 

Scooter 10 8 12 

 

This example served as a modeling proof to make sure the model is feasible and can produce 

tangible results. As seen in Figure 1 and Table 5, the entire demand from A to B will be satisfied 

using link 1. The problem becomes interesting for O-D pairs A-C and B-C since the network 

splits in two different routes for each pair.  
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Table 6. Example 1 results 

𝑣𝑎
𝑚 1 2 3 

Car 50 43 22 

Bicycle 11 6 4 

Scooter 18 10 10 

 

The system optimum flows per link and mode are shown in Table 6. This proves that the 

entire demand is met and that there is a preference for cheaper links. However, the users are not 

all employing the same link because they understand that it will cost them more time in 

congestion. For this example, 𝜏 will be equal to $15 for the calculation of users’ time cost which 

resulted on a total of $1,400 per hour, and a revenue of $320 per hour. Having such a small 

revenue per hour makes sense because of the size of the network.   

Intermediate Network- Example 2 

This paper examines a second numerical experiment on a more complicated network as seen 

in Figure 2. This network consists of an extension of the previous example, having 6 links and 4 

different nodes, making this problem more complex than example 1. Since this is an extension of 

example 1, some of the parameters stayed the same. This can be seen from Table 7 to 10.  

 

Figure 2. Intermediate network for fixed demand problem. 

Table 7. Pricing policy input for example 2 

 

 
1 2 3 4 5 6 

Car $2.50  $1.70  $3.10  $2.2 $2.80  $2.00  

Bicycle $0.50  $0.60  $0.80  $0.6 $0.50  $0.40  

Scooter $1.10  $1.20  $1.10  $1 $1.20  $0.90  

 

Table 8. Time impact coefficients for example 2 
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𝛽𝑎
𝑚 1 2 3 4 5 6 

Car 0.11 0.09 0.11 0.10 0.13 0.12 

Bicycle 0.09 0.08 0.07 0.05 0.04 0.05 

Scooter 0.10 0.16 0.12 0.10 0.09 0.11 

 

Table 9. Free flow travel time in min for example 2 

𝛼𝑎
𝑚 1 2 3 4 5 6 

Car 4 3 5 2 4 6 

Bicycle 8 7 8 6 7 9 

Scooter 6 4 6 5 4 6 

 

 

Table 10. Demand for example 2 

 

 
A-B A-C B-C B-A C-A C-B D-A D-B D-C 

Car 20 30 35 20 15 12 10 15 25 

Bicycle 5 6 4 3 4 5 5 5 6 

Scooter 10 8 12 8 1 8 6 7 9 

 

For the intermediate network, the feasibility of the problems stands, and some interesting 

system optimum flow links can be seen in Table 11. 

Table 11. Example 2 results 

𝑣𝑎
𝑚 1 2 3 4 5 6 

Car 62 55 30 15 57 35 

Bicycle 16 8 5 5 17 11 

Scooter 26 11 10 7 32 15 

 

This proves once again that the entire demand is satisfied, and that there is a preference for 

cheaper links. For example, in this case, users who are planning to go from D to A would rather 

use link 6 over 4 because it saves them having to go through an extra link that heavily increases 

their cost. For this example, 𝜏 is also used as $15 for the calculation of time cost and resulted on 

a total of $3,946 per hour, and a revenue of $748 per hour. 
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For further analysis, iterations were conducted to the intermediate network. As seen in Table 

12, the users seem to respond and behave accordingly to different pricing policies to minimize 

and maintain their users’ time cost while the company is increasing its revenue. All these results 

represent the optimal solutions of player 2, meaning that these are the optimal responses to a 

pricing policy manually set directly into GAMS. 

As seen in Table 12, the company is attempting to increase their revenue, and the pool of 

network users are minimizing their total time cost by responding accordingly to the strategic 

price changes of the other player. From these results, some key links should be highlighted; the 

company’s success to increase its revenue is achieved by increasing the price on the links with 

more usage, such as link 1 and 5. These links are unique in this network since a lot of users will 

be obligated to use them. Some O-D pairs are dependent only on those links, as seen in A-B, C-

A, and C-B.  

 

Table 12. Example 2 iteration results 

Iteration 
𝑦𝑚,𝑎 

1 2 3 4 5 6 
Time cost 

($/hr.) 

Revenue 

($/hr.) 

1 

Car $2.50 $2.20 $2.00 $2.60 $2.80 $2.80 

$3,945.27 $778.90 Bicycle  $0.50 $0.70 $0.50 $0.70 $0.60 $0.70 

Scooter $1.00 $1.10 $1.00 $0.90 $1.20 $1.10 

2 

Car $2.50 $2.50 $2.30 $2.10 $2.50 $3.50 

$3,945.24 $803.97 Bicycle  $0.50 $0.60 $0.60 $0.50 $0.90 $0.50 

Scooter $1.00 $1.00 $1.10 $0.80 $1.30 $0.80 

3 

Car $2.50 $1.80 $2.70 $1.50 $3.00 $3.80 

$3,945.58 $798.87 Bicycle  $0.50 $0.80 $0.80 $0.50 $0.60 $0.50 

Scooter $1.00 $1.20 $1.20 $0.80 $0.90 $1.00 

4 

Car $3.50 $2.50 $2.50 $2.50 $2.50 $2.50 

$3,946.29 $835.34 Bicycle  $0.80 $0.60 $0.60 $0.60 $0.60 $0.60 

Scooter $1.20 $0.80 $1.00 $1.00 $1.00 $1.00 

5 

Car $3.00 $1.50 $2.80 $1.50 $3.80 $2.50 

$3,945.23 $841.36 Bicycle  $0.80 $0.80 $0.80 $0.70 $0.80 $0.70 

Scooter $1.20 $1.00 $0.60 $1.00 $1.20 $1.00 
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Sensitivity Analysis 

The best way to understand the global optimum pricing scheme of the system is by 

evaluating the equilibrium link flow 𝑣𝑎
𝑚 and the parameters that affect the objective function; the 

free flow travel time 𝛼𝑎
𝑚 and congestion impact coefficient 𝛽𝑎

𝑚.  This model possesses several 

dimensions, so it’s important to concentrate in one link and mode at a time. The focus is in cars 

as the mode of transportation to analyze because is the class with higher impact in the system. In 

addition, this section examines the effects of these parameters on the revenue of the company 

and time cost of the users. This provides an overall understanding on how this model behaves 

and how the congestion and time parameters affect driver decision-making.  

 

 

Figure 3. Time impact coefficient 𝛽𝑎
𝑚 alteration effect on 𝑣𝑎

𝑚 

 

As seen in Figure 3,  a cross-linear behavior can be observed between flows in link 2 and 3. 

When increasing congestion impact 𝛽𝑎
𝑚 in link 2, more network users would rather take link 3 

instead, which is the alternative link option to get from node B to C. In addition, an analysis of 

the impact of free flow travel time 𝛼𝑎
𝑚 in the same links was performed. As seen in Figure 4, 

there is a very similar trend on the flow of these two links. The higher the 𝛼2
𝑐𝑎𝑟, the more user 

networks will be tempted to use link 3 even though congestion could be higher.  
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Figure 4. Free flow travel time 𝛼𝑎
𝑚 effects on 𝑣𝑎

𝑚 

 

The impact the price will have on both terms of the objective function was analyzed. This 

function contains the monetary price paid for the services offered by the shared transport 

company and the users’ time cost of the system, as seen before in the form of eq. F2. 

 

 

Figure 5. Revenue vs Time cost behavior 
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maximum level with the increase of the price charged in link 3 to $14.10. At this tipping point, 

the users’ time cost starts to increase while the revenue starts to decrease. 

 

 

Figure 6. Revenue over Time cost ratio 

 

Conclusions 

This paper examines how to determine optimal price levels for shared transport companies’ 

services in predetermined links. First, this project studied how to establish an optimal pricing 

policy on given links for hypothetical cases of fixed and elastic demand. For this, both models 

were developed using a Nash games theoretical framework. These formulations have the 

objective to maximize company revenue and minimize total users’ time cost while considering 

their route decision-making behavior. Two different network examples were solved using the 

fixed demand model which determined a system optimum users’ flow to minimize users’ time 

cost while proving problem formulation feasibility.  

Furthermore, different pricing policy iterations were performed on the intermediate network 

to better examine the performance of the model. Revenue was increasing while users’ time cost 

seemed to be converging or oscillating within a small range of values. In addition, a sensitivity 

analysis was conducted on this network to obtain a better overall understanding of the parameters 

of the model. A crossed-linear behavior of the link flows was expected and found by the 

controlled alteration of time parameters. Moreover, an analysis of the revenue to time cost ratio 
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performance was done. The numerical results confirm how the company can have an impact on 

both its revenue and time cost by modifying its pricing scheme.  

Finally, it should be acknowledged that there are still many variables that could be 

incorporated into the model to better simulate real-system behavior and constraints. Moreover, it 

was assumed that all drivers within the network make rational decisions. These models only 

examined congestion road pricing, but time dependency could be included to better capture rush 

hours of the network. Further research could incorporate drivers’ accidents probabilities and how 

this could cause further congestion in certain routes of the network.  
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