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Abstract  

The objective of this study was to test the validity and efficacy of Arena discrete-event simulations (DES) 

in modeling a specialty outpatient clinic, and to use the model to predict how the clinic could improve 

their patient flow. Real-life model inputs included the time that patients spent in each clinic process, 

patient arrival rates, and physician room schedules. Model outputs and feedback from clinical leadership 

validated the DES models. Then, modified DES models with different clinic room scheduling patterns 

and resource use tested the effect of changes. Analysis of the models revealed that adding two volunteers 

to escort patients in the morning and afternoon would decrease the queue time to see a physician by 

33.9% and 65.2%, respectively. The model results also suggested that there is not enough congestion in 

the clinic to warrant changing the clinic room scheduling. The results of the study support using DES in 

the modeling and analysis of specialty outpatient clinics to aid decision making.   
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Introduction 

Dynamic computer-based simulation modeling enables users to observe the dynamic 

behavior of entities in a system or the overall system. The behavior of entities, or the entire 

system, may change in response to different initial conditions, such as resources or process 

times. Dynamic computer-based simulations utilize equations that represent the true system to 

control entities in response to various initial conditions.  

Discrete-event simulation(s) (DES) is a type of computer-based simulation modeling that 

describes dynamical systems. One key characteristic of DES is that entities in the simulation 

have inconsequential behavior at all points between discrete time points (Meiss, 2007). In other 

words, DES represents the system as instantaneous events instead of continuous points; this is 

useful when simulating processes that depend on events and not continuous data, such as 

scheduling, resources, and capacity planning (Campbell, 2017).  

DES models may improve their validity by giving the option of introducing randomness, as 

real-life systems have some degree of stochasticity. Randomizing the amount of time that entities 

spend in each state with probability distributions allows for randomness (Zhang, 2010).  
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Although the results of a simulation model will likely be less accurate than the results of 

testing changes to a system in real life, DES provides a safe, cost-effective and time-effective 

way to study the response of the system to changes. For example, if a restaurant owner wanted to 

test the effect of decreasing the number of servers in real life, this may result in increased time 

for customers to receive their food. The cost could be customer dissatisfaction and/or customers 

choosing to dine elsewhere. If a restaurant owner wanted to vary the number of servers over 

several iterations, then they may have to do so over several evenings. With DES, the restaurant 

owner could vary the number of servers quickly in a model without affecting customer 

satisfaction. While there is the cost of time and effort to obtain data for and create a simulation 

model, this cost is relatively low for some systems in comparison to the cost of testing the 

changes in real life. In summary, processes may be simulated to minimize the risk of making 

decisions for system structure or flow. In fact, DES has various applications because of its ability 

to minimize risk; these applications include modeling supply chains, manufacturing and 

production, transportation planning and business processes (Tako, Robinson, 2012 

;Spieckermann, Stobbe, 2016; Chahar, Cheng, & Pranoto, 2011; Leva, Sulis, Lellis, & Amantea, 

2019). DES has also been applied to various healthcare systems that focus on managing patient 

flow through improving processes, including patient scheduling, and resource usage (Hamrock, 

Paige, Parks, Scheulen, & Levin, 2013; Medeiros, Hahn-Goldberg, Aleman, & O’Connor, 2019). 

DES may be especially useful for decision-making in healthcare systems engineering, as 

quality of patient care can be reduced if system changes are tested in real life. Even small 

changes in complex clinic processes can have cascading effects, such as shifting a bottleneck or 

changing wait times that could not be predicted without a simulation. With the dynamic, random, 

and quality of care focused nature of the clinic system, as well as the promise that DES has 

shown in other industries, DES was the method chosen to investigate the clinic flow of a 

specialty clinic. The aim of this study was to determine the validity and efficacy of DES for 

modeling a specialty outpatient clinic at the Veterans Affairs (VA) Hospital in Gainesville, 

Florida. 

The clinic modeled in the VA was the specialty outpatient clinic, a multi-specialty clinic that 

offers clinical services to eligible veterans. Clinical leadership were not satisfied with the clinic 

utilization rate and sought a way to improve patient flow; they wanted to increase the number of 

patients seen throughout the week. However, the clinical leadership was unsure of what changes 
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would be effective. DES enabled the clinic to study how they could change scheduling and 

resource usage. Analysis of the models revealed that adding two volunteers to escort patients in 

the morning and afternoon would decrease the queue time to see a physician by 33.9% and 

65.2%, respectively. The model results also suggested that there is not enough congestion in the 

clinic to warrant changing the clinic scheduling from fixed room scheduling to unassigned room 

scheduling.  The results of the study support using DES in the modeling and analysis of specialty 

outpatient clinics to support decisions.  The following paper outlines the steps taken to develop, 

validate and analyze the DES of a specialty outpatient clinic.  

Methods 

Arena simulation was the software used to develop the DES models. Arena is a simulation 

software based on the SIMAN simulation language with object-oriented and hierarchical 

elements (Takus, profozich, 1997). Arena was originally developed by Systems 

Modelling Corporation, before being acquired by Rockwell Automation headquartered in 

Milwaukee, WI (Martin, 2000). Several steps were taken to develop clinic models: input 

analysis, initial model development, model validation, modified model development and model 

analysis.  

Input Analysis 

Real data and inputs were necessary for the model’s development to make the DES 

representative of real-life conditions. Touring the specialty clinic floor and coordinating 

meetings with clinic staff to gather their insight on the clinic flow helped develop a realistic and 

relevant clinic model. Discussions with clinic staff drew attention to key problems that the clinic 

faced and indicated potential solutions. 

The VA collected raw data from several weekdays, as the appointment schedule for each 

physician varied day-to-day. However, the model only used Friday data for simplicity and 

because clinic staff observed that Friday had the most room for improvement due to the clinic's 

low room utilization rate and high patient wait times. The data collected included: patient check-

in and check-out time, time for physicians to escort patients to check-out area, time it takes for 

patients to check in and check out, patient time in vital rooms, physician time with patients, and 

physician room schedules.  
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Initial Model Development 

A basic clinic flow map would serve as the basis for the specialty clinic model (Figure 1). 

The model included only processes that had a relatively significant impact on patient flow 

(Figure 2).  For example, the model excluded walk-in patients because the number of walk-in 

patients was low and would have added an unnecessary layer of complexity to the model. 

 

 

Figure 1. Gainesville VA specialty clinic flow map developed for the DES model 

 

 

Figure 2. Initial VA clinic simulation model in Arena. 

A total of five clerks facilitated patient check-in and check-out. The model tracked time 

under the simulation clock variable in Arena, TNOW, in minutes. Zero minutes represented 8:00 

AM, while 480 minutes represented 4:00 PM. The specialty clinic data showed that patient 

arrivals were much more frequent in the morning than in the afternoon on Fridays. As such, a 

model representing the entire clinic day became two models, a morning and afternoon clinic 
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model; this allowed the morning and afternoon clinic resource use and scheduling to have 

separate evaluations. The only differences between the all-day and separate models were the data 

files the DES processed and the model’s stopping rule. The morning model stopped simulating 

when TNOW was greater than or equal to 240 minutes and the number of patients in the clinic 

simulation was zero. The afternoon clinic stopped simulating when TNOW was greater than or 

equal to 480 minutes and the number of patients in the clinic simulation was zero. Arena 

reported results as a time average for each process (e.g., average time for a physician to seize a 

room). These morning and afternoon clinic models served as the basis for all models. Additional 

details on each simulation module are in the Appendix, Table 3.   

Model Validation 

Equation (1) gave the real and simulated all-day, morning and afternoon clinic utilization 

rates.   

Utilization = 
Σappointment length

Σclinic hours
× 100% (1) 

To further validate the model, the results of a simulated clinic with exponential patient 

interarrival and the results of the morning and afternoon models were compared. Clinical 

leadership reviewed the model and gave feedback on the processes and wait times. 

Modified Model Development 

Several modified models investigated the effects of resource and scheduling changes with 

recommendations from clinic staff and the results of earlier models (Table 1). One 

recommendation from clinic staff was to develop a model with unassigned room scheduling. In 

the present, physicians followed a fixed room schedule where physicians had assigned clinic 

rooms for their appointments. Physicians were unable to use empty clinic rooms, which could 

have caused longer wait times if their rooms were still in use from other physician appointments. 

One possible reason that rooms would have still been in use is because physicians completed 

post-visit documents in their clinic room, potentially overlapping with the next physicians’ time. 

In response, some models had separate office spaces for physicians to complete post-visit 

documents. An unassigned room model was also developed where physicians could occupy any 

available room. Another issue presented by clinic staff was that physicians needed to escort 

patients to the check-out desk after their appointment, which sometimes prevented the physician 

from seeing the following patient on time. An alternative method discussed was having a 
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volunteer escort patient to the check-out desk. A summary of the models can also be found in 

Table 2. 

Table 1. Modified Morning and Afternoon Clinic Models 

Model Time 

(AM, PM, or 

AM & PM) 

Model 

Identifier 
Model Description 

AM & PM 1 (AM) 

2 (PM) 

Physicians were no longer assigned rooms as they were in a fixed room schedule. 

Instead, two rooms remained fixed, while 11 rooms in the AM and four rooms in the 

PM model rotated. The two rooms remained fixed because they contained specialized 

pacer medical equipment on several carts that could not be easily removed from the 

room.  

AM 3 Same as model 1, except nine unassigned rooms were available instead of 11. Two 

other rooms remained fixed. 

PM 4 Same as model 2, except three unassigned rooms were available instead of four. Two 

other rooms remained fixed. 

AM 5 Same as model 1, except eight unassigned rooms were available instead of 11. Two 

other rooms remained fixed.  

AM & PM 6 (AM) 

7 (PM) 

Same as model 1 and model 2, except the model was congested with an increased 

number of patients. The patients were all walk-in patients with an interarrival rate 

modeled by an exponential distribution.   

AM 8 Same as model 5, except two volunteers were also introduced to the model to escort 

patients to the check-out desk. This allowed physicians to be released to complete 

their post-visit paperwork immediately after seeing patients.  

AM 9 Same as model 8, except an office space was also added to the model for physicians to 

complete their post-visit paperwork in. The office space had an infinite capacity and 

prevented physicians from occupying physician rooms once physicians were done 

seeing patients.  

AM & PM 10 (AM) 

11 (PM) 

Same as initial AM and PM model, except one volunteer is used to escort patients to 

the check-out desk instead of physicians escorting patients to the check-out desk.  

AM & PM 12 (AM)  

13 (PM) 

Same as models 10 and 11, except two volunteers are used instead of one.  

AM 14 Same as initial AM model, except an office space was also added to the model for 

physicians to complete their post-visit paperwork in. 

PM 15 Same as model 2, except one volunteer escorted patients to the check-out desk and an 

office space was introduced to the model for physicians to complete their post-visit 

paperwork in.  

PM 16 Same as initial PM model, except an office space was introduced to the model for 

physicians to complete their post-visit paperwork in. 

AM&PM 17 (AM) 

18 (PM) 

Same as initial AM and PM model, except the model was congested with an increased 

number of patients. The patients were all walk-in patients with an interarrival rate 

modeled by an exponential distribution e2. 
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Table 2. Summary of Modified Morning and Afternoon Clinic Models 

Model Number Model Summary 

1 AM, 2 fixed rooms, 11 unassigned rooms 

2 PM, 2 fixed rooms, 4 unassigned rooms 

3 AM, 2 fixed rooms, 9 unassigned rooms (2 reduced) 

4 PM, 2 fixed rooms, 3 unassigned rooms (1 reduced) 

5 AM, 2 fixed rooms, 8 unassigned rooms (3 reduced) 

6 AM, 2 fixed rooms, 11 unassigned rooms, exponential patient 

interarrival rate 

7 PM, 2 fixed rooms, 4 unassigned rooms, exponential patient 

interarrival rate 

8 AM, 2 fixed rooms, 8 unassigned rooms (3 reduced), 2 

volunteers 

9 AM, 2 fixed rooms, 8 unassigned rooms (3 reduced), 2 

volunteers, office space 

10 AM, 13 fixed rooms, 1 volunteer 

11 PM, 6 fixed rooms, 1volunteer 

12 AM, 13 fixed rooms, 2 volunteers 

13 PM, 6 fixed rooms, 2 volunteers 

14 AM, 13 fixed rooms, office space 

15 PM, 2 fixed rooms, 4 unassigned rooms, 1 volunteer, office 

space 

16 PM, 6 fixed rooms, office space 

17 AM, 13 fixed rooms, exponential patient interarrival rate 

18 PM, 6 fixed rooms, exponential patient interarrival rate 
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Results 

Initial Morning Simulation Results 

The results of the morning clinic model indicated that the longest wait time occurred when 

patients waited to see a physician (Figure 3). The results further indicated that there was almost 

zero wait for physicians to seize their scheduled room to see patients, or to seize their room to 

complete post-visit documents.  

Initial Afternoon Simulation Results 

The results of the afternoon clinic model were similar to the morning clinic model, but 

smaller in magnitude since the morning clinic had about 3.6 times more patients than the 

afternoon clinic. The longest queue would occur when patients were waiting for their physician 

(Figure 4). The results also indicated that there was almost no wait for physicians to seize their 

scheduled room to see patients, or to seize their room to complete post-visit documents.  

 

 

Figure 3. Initial morning simulation model queue lengths 

 

Figure 4. Initial afternoon simulation model queue lengths 

Model Validation Results 

     The average utilization rate of clinic rooms in the afternoon and all-day data was 34.7% 

and 29.1%, respectively. The average utilization rate in the simulated afternoon and all-day clinic 

was 32.38% and 18.32%, respectively.  The utilization rates were within a 11% margin of error. 

The sensitivity of the models to exponential patient interarrival further supported the validity of 
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the models because predictable results occurred: all queues increased, and the bottleneck of the 

clinic remained the same. Medical leadership also reviewed the model processes and delay times. 

Modified AM Model Results 

The use of an unassigned room schedule decreased provider wait time by an average of 5.11 

minutes (Figure 5). When three of the 11 rooms were removed in a model with an unassigned 

room schedule, all queues began to rise. However, the removal of two rooms had no effect on 

patient wait times (Figure 5).  When two volunteers were introduced to a clinic with an 

unassigned room schedule and nine of the 11 rooms, the provider wait time decreased by an 

average of 26.6 minutes, or 35.0%, relative to the same model with no volunteers (Figure 5). 

When exponential patient interarrival congested a fixed schedule model and unassigned room 

schedule model, provider wait time was an average of 29.9 minutes or 42.3% lower in the 

unassigned room schedule model (Figure 6). When one volunteer was introduced to a fixed room 

model, the provider wait time decreased by an average of 26.08 minutes, or 33.9%, relative to 

the same model with no volunteers (Figure 7). The queue length to seize one volunteer in a fixed 

room model was 12.9 minutes on average (Figure 7). When two volunteers were used in a fixed 

room model, the queue to seize a volunteer decreased on average from 12.9 minutes to 0.38 

minutes and all other queues remained the same (Figure 7). There was no observed difference in 

wait times when an office space was introduced to any morning clinic model (Figure 5 and 

Figure 7). 
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Figure 5. Comparison between morning unassigned room schedule clinics and initial morning model results 

Figure 6. Comparison between morning fixed room congestion results and morning unassigned room congestion 

results  

 

Figure 7. Comparison between morning fixed room schedule clinics and initial morning model results. 

Modified PM Model Results 

The use of an unassigned room schedule decreased provider wait time by an average of 0.49 

minutes (Figure 8). The removal of one room had no effect on patient wait times (Figure 8). 

When one volunteer and an office space were introduced to a clinic with an unassigned room 

schedule, the provider wait time increased by an average of 0.46 minutes compared to the initial 
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unassigned room schedule model, provider wait time was an average of 132 minutes, or 105%, 

lower in the unassigned room schedule model (Figure 9). The queue to seize a room was also an 

average of 6.19 minutes higher in a congested clinic with a fixed room schedule than a congested 

clinic with an unassigned room schedule (Figure 9).  When one volunteer was introduced to a 

fixed room model, provider wait time decreased by an average of 0.06 minutes, or 37.6%, 

relative to the same model without a volunteer (Figure 10). The queue to seize a volunteer was 

an average of 0.57 minutes long in a fixed room model (Figure 10). When two volunteers were 
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used in a fixed room model, there was no queue to seize a volunteer and provider wait time 

decreased 0.10 minutes, or 65.2%, on average relative to the same model without volunteers. 

There was no observed difference in wait times when an office space was introduced to any 

model (Figure 8 and Figure 10).  

 

Figure 8. Comparison between afternoon unassigned room schedule clinics and initial afternoon model results 

 

Figure 9. Comparison between afternoon fixed room congestion results and afternoon unassigned room congestion 

results 
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Figure 10. Comparison between afternoon fixed room schedule clinics and initial afternoon model results 

Discussion 

 The results of the initial morning and afternoon clinic simulations suggest that physicians 

are the bottleneck of the clinic, as the wait time to see a physician was much longer than any 

other clinic wait time. With current patient flow in the Friday clinic, the wait time for physicians 
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 Adding volunteers to the models expectedly reduced the wait time to see a physician 

because there was one less process constraining physician time. In other words, reducing the 

burden on the bottleneck resource may be effective in improving clinic performance. Adding two 

volunteers to the fixed room morning model reduced the wait time for volunteers to zero minutes 

and the queue to seize a physician decreased by an average of about 13 minutes. Adding one 

volunteer to the afternoon clinic had similar results, as there was also no wait time for volunteers 

and a decrease in queue lengths. These results support that two volunteers should be added to the 

morning clinic and one volunteer should be added to the afternoon clinic to improve patient flow. 

Conclusion 

DES models evaluated the clinic processes and identified the bottleneck of the clinic. Clinic 

leadership could observe clinic performance with changes to the clinic structure without 

interrupting the clinic operations, or the time and cost of physically testing changes to the clinic. 

The specialty clinic will be able to apply these results in making decisions about resource 

allocation, scheduling, and clinic layout. The changes and decisions made by clinics based on 

DES results do not have to come directly from the model’s intended output. For example, the 

study on adding volunteers to the model revealed that physicians escorting patients was 

constraining patient flow. However, if the clinic did not want to depend on volunteers to escort 

patients as suggested in the model, they could study alternative models. For example, a model 

could adjust the clinic layout and place the check-out area closer to the clinic rooms to decrease 

the amount of time that physicians spend escorting patients. Overall, the results of this study 

support that DES shows promise for supporting decision-making in clinics. 

Limitations 

One limitation of using DES is that event simulation is a simplified presentation of reality 

that does not entirely account for the unpredictable nature of real-life systems. The results of the 

simulation may not apply under unexpected events, such as a natural disaster or other event that 

significantly increases patient arrival past the congested model arrival rate. Randomness could 

also come from the behavior of clinic staff, as productivity might fluctuate throughout the day. 

The model assumed that productivity did not fluctuate with time. Another limitation of DES is 

that it relies heavily on real-life data that may be expensive and time-consuming to acquire. If 

real data is not obtained, it may be difficult to develop a reliable model that accurately represents 

the clinic flow. One important note is the lack of standard deviation on any of the wait times. 
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Although there is error associated with the data, the sample size was not high enough for Arena 

to make a normal distribution that would allow Arena to automatically report the halfwidth. 

Thus, no standard deviation was reported.   

Future Work 

Other than the congested model, the simulation models assumed that there were no walk-in 

patients. Future research could investigate the effect of walk-in patients on patient flow. One 

possible research area would be allocating an extra clinic room just for walk-in patients. The 

current model also assumed that the productivity of clinic staff is constant. While, in real life, 

productivity may fluctuate with time or patient arrival rate. Adjusting the DES model delays to 

account for fluctuations in productivity of clinic staff may improve the accuracy of the model. 

Data on productivity could be obtained from psychological studies. This simulation, or other 

DES models, could also be used by the clinic administration staff to decide alternative uses for 

the unnecessary room(s) in the morning and afternoon clinic. Future work could also extend 

outside of the medical field, as studies could investigate the use of DES in decision making for 

resource allocation and facility design in clothing stores, grocery stores, restaurants, and 

more.  To ensure that Arena does calculate a standard deviation, future work should also include 

a tally module. If no tally module is included, then replications should increase to have Arena 

automatically report the halfwidth of average patient wait times between replications. 
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Appendix 

Table 3. Simulation Functions 

Process Purpose 

Create scheduled arrival 

control entity to read 

data 

Starts simulation/ opens clinic at 8:00 AM.  

Read next arrival time Reads arrival time of patients from Excel spreadsheet and stores time under variable 

ArrivalTime 

Read provider indicator Reads entity provider identifier from Excel spreadsheet and stores under variable 

ProviderIndicator 

Read room indicator Reads provider room identifier from Excel spreadsheet and stores under variable 

RoomIndicator.  

Delay until actual 

arrival time 

Prevents patient from arriving in clinic until appointment time 

Increment arrival 

counter 

Increases tally number of patients in clinic by one each time a patient arrives 

 Handle the arrival by 

clerk 

Simulates patient check-in with triangular distribution. Maximum, minimum, and mean time 

spent at check-in were obtained from raw data.  

Examine vitals Simulates patients getting their vitals checked in vitals room with triangular distribution. 

Maximum, minimum, and mean time spent at check-in were obtained from raw data. 

Record the number of 

patients before vitals 

queue 

Keeps track of vitals queue for model analysis. 

Seize scheduled 

provider 

Assigned provider is seized by patient. 

Seize scheduled 

location 

Assigned room is seized by patient and provider.  

Delay time by provider 

in room 

Simulates time it takes for physician to see patient with triangular distribution. Maximum, 

minimum, and mean time spent at check-in were obtained by calculating the utilization rate of 

the clinic rooms and modifying the distribution until the utilization rate was achieved.  

Check-out by clerk Simulates patient check-out with triangular distribution. Maximum, minimum, and mean time 

spent at check-in were obtained from raw data. 

Separate into duplicate 

arrival to record data in 

room by physician 

Allows patient to leave clinic while provider is doing post-visit paperwork.  

Decrement arrival 

counter 

Decreases tally number of patients in clinic by one each time a patient leaves. When this tally 

number is zero, the simulation has met one of its terminating condition. 

Seize the provider and 

location to record data 

Provider seizes room and records post-visit data.  

Release the provider Provider is free to see another patient 

Terminate treatment Allows the clinic to stop accepting patients at 4:00 PM 
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