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Abstract 

There is no formula for general t-stack sortable permutations. Thus, they are studied by establishing lower 

and upper bounds. Permutations that avoid certain pattern sets provide natural lower bounds. This paper 

presents a recurrence relation that counts the number of permutations that avoid the set 

(23451,24351,32451,34251,42351,43251). This establishes a lower bound on 3-stack sortable 

permutations. Additionally, the proof generalizes to provide lower bounds for all t-stack sortable 

permutations.  
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Definitions and Preliminaries 

Let [n] denote the set {1, ... , n}, with n ≥ 1. An n-permutation is a bijection from [n] to [n]. 

In this paper, permutations are written in one-line notation. For instance, the 4-permutation that 

sends 1 to 2, 2 to 4, 3 to 3 and 4 to 1 is written 2431 (read two-four-three-one).  

Thus, one may speak of the generic n-permutation p as a sequence (𝑎
𝑎

)as i runs from 1 to n. 

Accordingly, one may speak of an m-subsequence 𝑎′ of a permutation p. An m-subsequence is 

obtained by deleting (𝑎 − 𝑎)elements from the n-permutation without modifying the order. For 

instance, 231 is a 3-subsequence of 2431, as is 431. 41 is a 2-subsequence of 2431.  

Next, an m-subsequence 𝑎′ can be normalized by assigning it to an m-permutation via the 

natural order-preserving bijection on the elements. For example, normalizing 431 yields 321 and 

normalizing 41 yields 21. Normalizing 5389 yields 2134. Observe that the relative ordering is 

preserved. 

This allows a definition of the concept of pattern avoidance. A permutation p contains a 

pattern q if  there exists a subsequence of p which yields q when normalized. For instance, 3421 

contains the pattern 231, since the subsequence 342, when normalized, yields 231. Conversely, a 
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permutation p avoids q if it does not contain q. For instance, 1432 avoids 231. None of the 3-

subsequences of 1432 yield 231 when normalized: 143 yields 132, 142 yields 132, 132 yields 

132, and 432 yields 321. This can be generalized by saying p avoids a set of patterns S if it 

avoids every pattern in S. Note that a subsequence avoids some given pattern if and only if its 

normalization does. 

The next concept that can be described is that of a stack sortable permutation. Given an n-

permutation p, it is possible to write p=LnR, where n is the largest element in the permutation, L 

is the subsequence on the left of n, R is the subsequence on the right of n, and L, n, and R are 

concatenated. Then, define the stack sorting map as the recursive function 𝑎(𝑎)  =

 𝑎(𝑎)𝑎(𝑎)𝑎, again, with concatenation. If s(p) is the identity permutation 123...n, the 

permutation p is said to be 1-stack sortable. Generalizing, a permutation p is said to be t-stack 

sortable if 𝑎𝑎(𝑎)is the identity permutation. 

Deducing efficient ways to sort a list of n objects is an important problem in algorithm 

design, and computer science in general. The best kind of generic sorting algorithm requires O(n 

log n) steps. However, if additional information about the list is known, more efficient 

algorithms may be employed. Several such algorithms were described by Donald Knuth in his 

seminal work The Art of Computer Programming. One of these was adopted by Julian West, 

who reformulated it as the modern definition of the stack sorting map.  

In his dissertation, West noted that the number of 1-stack sortable n-permutations is given by 

the nth Catalan number, as is the number of n-permutations that avoid 231. Additionally, he 

conjectured a closed formula for the number of 2-stack sortable n-permutations. This formula 

was later proved by Doron Zeilberger. However, there is no conjecture for a closed formula for 

3-stack-sortable n-permutations and beyond.  

Without a closed formula, the best way to estimate the number of general t-stack sortable n-

permutations is to find lower and upper bounds. The connection with pattern avoidance bears 

fruit to this end. A permutation p is 1-stack sortable if and only if it avoids 231. It turns out that a 

permutation p is 2-stack sortable if it avoids the set S2 = {2341,3241}, and 3-stack sortable if it 

avoids the set S3 = {23451,24351,32451,34251,42351,43251}. Thus, counting the number of n-

permutations that avoid the set S3 provides a natural lower bound for the number of 3-stack 

sortable n-permutations. 
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Result 

Theorem. Let 𝑎𝑎be the number of n-permutations that avoid S3. Then for n > 4, 

𝒂𝒂 =  𝒂𝒂𝒂−𝒂  + 
𝒂

𝒂
∑

𝒂−𝒂

𝒂=𝒂

𝒂𝒂𝒂𝒂−𝒂+𝒂 

with initial terms a1 = 1, a2 = 2, a3 = 6, a4 = 24.  

Proof. If n = 1, 2, 3 or 4, the values of an are easy to check by inspection. So assume n > 4.  

To begin, call the patterns in the set S3 bad patterns. An element in a permutation is  

involved in a bad pattern, or plays a role in a bad pattern, if it is part of a subsequence that 

normalizes to a bad pattern. This proof will examine the allowed positions of the numbers 1 to n 

in a series of steps, ensuring that no bad patterns occur at each step.  

Step I 

First, consider the largest number, n. Note that the only possible role the number n could play 

in a bad pattern is the role of the peak (i.e. the role of 5).  

There are n possible positions for the number n in an n-permutation. Look at each of these 

positions and count their contribution to an. Consider the cases where the number n is in position 

1, 2, 3 or n. In each of these cases, n cannot be involved in a bad pattern, since its position 

prevents it from being a peak. Thus, in each of these cases, the contribution to an is precisely an-1 

(no more by definition, and no less since n cannot be involved in a bad pattern). This 

immediately gives a contribution of 4an-1.  

Step II 

Claim: Let p be an n-permutation, and suppose n is in position i, where 4 ≤ i ≤  n-1. Then the 

number n is not involved in any bad pattern if and only if the numbers 1, 2, 3, … , i-3 are all to 

the left of n. 

Justification: Suppose not all these numbers are to the left of n. Then certainly one of these 

numbers must be to the right of n. Call it m. Let B = {r | m < r < n}. Note that |B| ≥ n-i+2 ≥ 3. 

Since the number n is in position i, there are i-1 spots to the left of n and n-i spots to the right of 

n. But one of the spots on the right is taken by m, so there are only n-i-1 possible spots to the 

right of n. By the Pigeonhole Principle, at least three of the numbers in B must be to the left of n. 

This creates a bad pattern involving n (i.e. the three numbers in B, followed by n, followed by 

m). 
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The other direction now follows. Suppose the numbers 1, 2, 3, … , i-3 are all to the left of n. 

As mentioned earlier, the only role n can play is the role of the peak. Thus, if a bad pattern were 

to involve n, it would have to involve three numbers to the left of n, and one number to the right 

of n. First, observe that every number in 1, 2, … , i-3 is smaller than every number to the right of 

n. Thus, they cannot be involved in bad patterns that also involve any numbers to the right of n. 

Next, notice that there are only two numbers (call them r and s) not in 1, 2, … , i-3 that live on 

the left of n (since there are only i-1 spots to the left of n). This is too few numbers to form a bad 

pattern that involves n. Thus, there are no bad patterns involving n. 

Now that the claim is established, the next argument follows. Fix n in position i. The only 

permutations that should be counted are those that do not contain any bad patterns. So it is 

necessary that n is not involved in a bad pattern. To ensure this condition is met, 1, 2, … , i-3 

must all be to the left of n. However, this does not suffice. Bad patterns might still occur without 

involving n. Where could these occur? 

Step III 

Observe that the only way bad patterns could occur is one of the two following situations. 

Either the bad pattern involves numbers that live exclusively on the left of n, or it occurs in a 

subsequence of r, s and numbers to the right of n (of course the bad pattern could involve only 

numbers on the right, but such a situation is included in the latter condition). This is because, as 

observed before, no number in 1, 2, … , i-3 can be involved in a bad pattern that also involves 

any number to the right of n. 

Thus, consider the following two subsequences: x, which is the subsequence containing the 

first i-1 terms of the permutation, and y, which is the subsequence containing r, s, and then the 

last n-i terms of the permutation. Observe that x and y have two elements in common, precisely r 

and s. If r and s are in the same order in both x and y, then the pair (x,y) refers to a valid 

permutation. This happens exactly half the time. Thus, when n is in position i, the contribution to 

an must be 
1

2
𝑎𝑖−1𝑎𝑛−𝑖+2. To clarify, this is because x must contain no bad patterns (the ai-1 

factor), y must contain no bad patterns (the an-i+2 factor), and r and s must be in the same order in 

both x and y, which gives the half factor.  

Summing over i, as i runs through 4 ≤ i ≤ n-1, and re-indexing, 

𝒂𝒂 =  𝒂𝒂𝒂−𝒂  + 
𝒂

𝒂
∑

𝒂−𝒂

𝒂=𝒂

𝒂𝒂𝒂𝒂−𝒂+𝒂 
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Generally speaking, let St be the set of patterns of length t+2 whose last two entries are t+2 

and then 1. A permutation is t-stack sortable if it avoids St. The proof above generalizes to any 

such St. Thus, one obtains a family of recurrences that provide lower bounds for general t-stack 

sortable permutations. For some fixed t, the recurrence is as follows for n > t+1, with the first 

t+1 values of an simply being n!. 

𝑎𝑎 =  (𝑎 + 1)𝑎𝑎−1  +  
1

(𝑎 − 1)!
∑

𝑎−2

𝑎=𝑎

𝑎𝑎𝑎𝑎−𝑎+𝑎−2 

 


