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Abstract 

There has been significant research interest recently in random networks of one-dimensional elements 

such as nanotubes and nanowires. In particular, metal nanowire networks exhibit high transmittance, low 

sheet resistance, mechanical flexibility, and fast deposition. These unique properties make metal nanowire 

networks promising candidates as transparent, conductive electrodes. In this work, we perform Monte 

Carlo simulations to study the effect of the wire-to-wire junction resistance on the resistivity and 

percolation critical exponents of metal nanowire networks. We compute the network resistivity as a 

function of the wire-to-wire junction resistance over six orders of magnitude, ranging all the way from a 

junction resistance-dominated to a nanowire resistance-dominated network. We study this effect when 

other nanowire/device parameters are also varied. We also investigate the effect of the wire-to-wire 

junction resistance on the percolation critical exponents over a wide range of nanowire and device 

parameters. The junction resistance plays a critical role in determining both the resistivity and the critical 

exponents of metal nanowire networks. These studies illustrate how the junction resistance affects the 

macroscopic resistivity of the network. They also show that Monte Carlo simulations are an essential tool 

for providing insights into the percolation resistivity of transparent, conductive metal nanowire networks. 

  

 

Introduction 

There has been significant research interest recently in thin films consisting of random 

networks of one-dimensional (1D) nanoelements, such as carbon nanotubes, graphene 

nanoribbons, and metal nanowires, since they are promising candidates for next-generation 

transparent conductors, which are used in many device applications such as touch screens, flat 

panel displays, solar cells, light-emitting diodes (LEDs), and wearable flexible electronics (Hecht 

et al., 2011; Coleman and De, 2011; Hu et al., 2011; Ye, 2014). In particular, Ag and Cu 

nanowire networks exhibit high transmittance, low sheet resistance, mechanical flexibility, and 

solution-based fast deposition (Hecht et al., 2011; Coleman and De, 2011; Hu et al., 2011; Ye, 

2014; Langley et al., 2013; Borchert et al., 2015; Ackermann et al., 2016; Aurang et al., 2016).  
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These unique properties make metal nanowire networks emerging candidates to replace indium 

tin oxide (ITO), which suffers from brittleness, scarcity, high cost, and slow deposition.      

At the high optical transmittance values required for transparent conductors, metal nanowire 

networks need to be very thin.  At those thicknesses, the electrical transport and resistivity in 

these networks deviate from their bulk properties and are governed by percolation theory 

(Stauffer and Aharony, 1985).  As a result, Monte Carlo simulations need to be employed to 

theoretically calculate the percolation resistivity of networks consisting of 1D nanoelements 

(Jagota and Tansu, 2015; Behnam and Ural, 2007; Simoneau et al., 2015; White et al., 2009; 

Berhan and Sastry, 2007).  However, most simulation work on 1D nanoelement networks has 

modeled the nanowires as straight sticks.  In reality, the nanotubes and nanowires in networks 

deposited experimentally exhibit some degree of curviness (Ye et al., 2014; Aurang et al., 2016; 

Kim et al., n.d.; Ye et al., 2013; Azuma et al., 2013).  There has been some theoretical work on 

the effect of curviness on the percolation threshold in carbon nanotube/nanofiber networks (Yi et 

al., 2004) and nanocomposites (Berhan and Sastry, 2007; Chunyu, 2007; Yu et al., 2013; H.M. et 

al., 2010), showing that curviness increases the percolation threshold of random networks.  

Curviness not only affects the percolation threshold, but also the resistivity of the network, which 

determines the sheet resistance of transparent conductors.  In a few previous studies, it has been 

shown that waviness decreases the conductivity of carbon nanotube networks (Simoneau et al., 

2015) and three-dimensional (3D) carbon nanotube-based nanocomposites (Bao et al., 2013; 

Takeda et al., 2011; Li et al., 2007; Dalmas et al., 2006).  However, a systematic and 

comprehensive study of the effect of nanowire curviness on the scaling of percolation resistivity 

in metal nanowire networks and its interaction with other nanowire/device parameters, in 

particular nanowire alignment, is currently lacking.  

In this work, we systematically study the effect of junction resistance on the percolation 

resistivity of metal nanowire networks by Monte Carlo simulations.  We develop a method to 

generate curvy nanowires using 3rd-order Bézier curves and the concept of curviness angle, 

which puts a geometrical constraint on the statistical distribution of nanowire curviness in the 

network.  We then systematically study the effect of curviness on the network resistivity and its 

interaction with two other nanowire/device parameters, namely nanowire density and nanowire 

length  
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The results presented in this work are not limited to metal nanowire networks, but can be 

applied to any junction-resistance dominated two-dimensional (2D) or vertically stacked quasi-

2D network, film, or nanocomposite consisting of 1D nanoelements such as carbon nanotubes, 

graphene nanoribbons, nanowires, and nanorods.  Our results show that computational studies 

are an essential tool for developing a better physical understanding of percolation transport and 

resistivity scaling in transparent, conductive nanowire networks and predicting/optimizing their 

electronic properties for a wide range of applications. 

 

Computational Method 

Generation of the Network 

We employed Monte Carlo simulations to study the electrical characteristics of curvy 

nanowire networks.  A similar procedure for generating straight nanowires as 1D width less 

“sticks” and calculating the resistivity of the network has been explained in detail in our previous 

work (Behnam and Ural, 2007; Behnam et al., 2007; Hicks et al, 2009; Behnam et al., 2008).  

Briefly, each nanowire in the network is modeled as a stick with a fixed length lW with a random 

position and direction on a 2D grid defined by the device length L and the device width W, lying 

between two electrodes.  Nanowires are first generated in a rectangular area larger than the 

device area by a length equal to lW on each side; subsequently, only nanowires lying in the inner 

rectangle defined by L and W are used in the resistivity calculation.  This random generation of 

nanowires on the 2D grid is repeated for five vertically stacked layers to form the network with 

the desired value of the nanowire density n, which is defined as the total number of nanowires in 

all five layers per unit area in units of m-2.  It is assumed that only nanowires in the same or 

nearest neighbor 2D layers form junctions, and the farther away layers are non-interacting.  This 

approach was chosen to more realistically model experimentally studied metal nanowire 

networks and thin films.   

We used 3rd-order (cubic) Bézier curves to mathematically generate curvy nanowires.  A cubic 

Bézier curve B(t) is a parametric function given by 

𝐵(𝑡) = (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑡𝑃1 + 3(1 − 𝑡)𝑡2𝑃2 + 𝑡3𝑃3,   (1)   

where the parameter t is defined in the range 10  t , and the function is specified by the 

values of the four control points, namely P0, P1, P2, and P3, whose t coordinates are 0, 1/3, 2/3, 
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and 1, respectively.  By definition, P0 is the start and P3 is the end point of the curve.  As a result, 

the degree of curviness of the nanowire is specified by how far away the two intermediate 

control points (P1 and P2) of the Bézier curve may lie, in the tangential sense, from a straight 

path connecting the two ends of the curve (P0 and P3), as illustrated in Fig. 1(a).  The nanowire 

itself, however, does not actually pass through P1 and P2. 

In order to quantify the degree of curviness in the network, we define the curviness angle c 

with respect to the straight line connecting P0 and P3 such that possible anchor points of P1 and 

P2 may lie on normal line segments extending from points 1/3 and 2/3 of the distance from P0 to 

P3, satisfying the properties 𝑡𝑎𝑛( 𝜃𝑐/2) ≤ |𝑡𝑎𝑛( 𝜃𝑃1)/3| ≤ 𝑡𝑎𝑛( 𝜃𝑐) and 𝑡𝑎𝑛( 𝜃𝑐/2) ≤

|𝑡𝑎𝑛( 𝜃𝑃2) × 2/3| ≤ 𝑡𝑎𝑛( 𝜃𝑐), as shown in Fig. 1(a).  Here, 𝜃𝑃1and 𝜃𝑃3denote the angles formed 

by P1 and P2, respectively, referenced to the line P0-P3.  By this definition, c = 00 corresponds 

to a perfectly straight nanowire network with no curviness, and the degree of curviness increases 

as c increases.  

Once the curviness angle for the network is defined, P1 and P2 points of each nanowire is 

generated randomly within the allowed range specified above.  As a result, the network contains 

nanowires with a statistical distribution of the degree of curviness generated within the 

constraints defined by the curviness angle.  In the implementation of the simulation code, once 

the Bézier curves are generated, they are approximated by 8 straight line sub-segments.  This 

number of segments was found, for high curviness, to be the smallest number such that using one 

more segment would not change the calculated network resistance by more than 1%.  

Furthermore, the length between the start and end points (P0 and P3) is scaled to make the curved 

length of each nanowire equal to the nanowire length lW specified in the code.   

In addition to curviness, to quantify the degree of nanowire alignment in the network, we 

define the alignment angle a.  The straight paths connecting P0 and P3 for each nanowire in the 

simulation are generated at random angles  with respect to the horizontal axis in the range 

aa    and 
aa   180180 , where a is the alignment angle defined in the range 

 900 a , as shown in our previous work (Behnam et al., 2007, Hicks et al., 2009, Behnam et 

al., 2008).  By this definition, a = 90o yields completely randomly distributed nanowires, 

whereas a = 0o yields nanowires perfectly aligned along the horizontal axis between Electrode 

1 and Electrode 2.  Figures 2(a)-(d) show four different nanowire networks that we have 

generated using the simulation code with different values of c and a.  
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Figure 1. (a)  Illustration of the generation of a curvy nanowire.  P0, P1, P2, and P3 are the four control points of 

the cubic Bézier curve used to generate each curved nanowire.  P1 and P2 lie 1/3 and 2/3 of the distance along the 

straight line joining P0 (start) and P3 (end) points.  The curviness angle c is defined with respect to the straight line 

connecting P0 and P3 such that possible anchor points of P1 and P2 are limited to the vertical solid blue lines depicted 

in the figure.  The red dotted line connecting P0 and P3 shows the effective straight length leff and the red solid line is 

the nanowire length lW. 

 

 

 
 

 

Figure 2. Nanowire networks generated using our Monte Carlo simulation code showing (a) randomly oriented 

(θa = 90°) straight nanowires (θc = 0°), (b) randomly oriented (θa = 90°) curvy nanowires (θc = 81°), (c) aligned (θa = 

10°) straight nanowires (θc = 0°), and (d) aligned (θa = 10°) curvy nanowires (θc = 81°). 

 

Calculation of Resistivity 
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There are two contributions to the resistivity of the network.  The first is the nanowire-nanowire 

junction resistance, which is modeled as a fixed resistance RJ, and the second is the resistivity of 

the nanowire itself, which is modeled by Rl, the resistance of a nanowire having a length of 1 m.  

As a result, the resistance Rd of a nanowire segment of length d microns between two junctions is 

given by dRR ld  .  Previous experimental and theoretical work on metal nanowires have shown 

that the junction resistance dominates the overall resistivity of the network (Jagota and Tansu, 

2015; Mutiso and Winey, 2013; Mutiso et al., n.d.); as a result, we have used 
lJ RR 1000  in the 

simulations.  Junctions between nanowires, as well as nanowires and the two electrodes that 

occupy fixed locations in space, are identified and compiled into an adjacency matrix of resistors.  

Using the boundary conditions imposed by the electrode voltages, the overall network resistance 

is calculated using Modified Nodal Analysis (MNA) (Ho, 1975) and summing the currents at one 

electrode, as explained in detail previously (Behnam and Ural, 2007; Behnam et al., 2007; Hicks 

et al., 2009; Behnam et al., 2008; Hicks et al., 2009).  In the plots presented in the next section, 

each resistivity data point represents the average of 400 different simulations of the network.  

 

Results and Discussion  

Resistance Ratio and Nanowire Densities  

In most Monte Carlo simulations, it is assumed that junction resistance (RJ) dominates 

nanowire resistance (Rw). However, recent experiments have shown that, for metal nanowire 

networks such as Ag, junction resistance can be significantly lowered by post-deposition 

treatments such as thermal annealing, plasmonic welding, joule heating, and mechanical 

pressing. By tuning the junction-to-nanowire resistance ratio (RJ/ Rw), the resistivity of the 

network can be changed from a junction-dominated high resistance state (HRS) to nanowire-

dominated low resistance state (LRS). Figure 3 shows the log-log plot of normalized resistivity 

versus resistance ratio for five different nanowire densities ranging from 5 μm-2 to 35 μm-2. It can 

be seen from Figure 3 that, as the nanowire density decreases, the resistivity of the network 

increases. At fixed nanowire density, n, resistivity is initially constant for nanowire-dominated 

networks (RJ/ Rw <1). The ratio of resistivity for junction-dominated high resistance state (HRS) 

(RJ/ Rw = 103) to nanowire-dominated low resistance state (LRS) (RJ/ Rw = 10-3) increases as 
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nanowire density decreases. Decreasing nanowire density drives the network towards the 

percolation threshold, which magnifies the effect of junction resistance on resistivity. 

 

Figure 3.  Log-log plot of normalized resistivity versus resistance ratio for five different nanowire densities 

ranging from 5 μm-2 to 35 μm-2, as labeled by different symbols.  The other simulation parameters are nanowire 

length lW = 2 m, device length L = 10 m, device width W = 10 m, and alignment angle a = 90o (i.e. randomly 

distributed).  The solid line is the linear best-fit to the data. 

 

Resistance Ratio and Nanowire Length 

Figure 4 shows the log-log plot of the normalized resistivity versus resistance ratio for five 

different nanowire lengths (lw) ranging from 1.3 μm to 4 μm. It can be seen from Figure 4 that as 

nanowire length decreases, the resistivity of the network increases. At fixed nanowire density lw, 

resistivity is initially constant for nanowire-dominated networks, but increases as the network 

becomes junction-dominated. HRS to LRS resistivity ratio increases as lw decreases. Decreasing 

lw drives the network towards the percolation threshold, which magnifies the effect of junction 

resistance on resistivity. 
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Figure 4.  Log-log plot of normalized resistivity versus resistance ratio for five different nanowire lengths 

ranging from 1.3 μm to 4 μm, as labeled by different symbols.  The other simulation parameters are n = 10 μm-2, L = 

10 μm, W = 10 μm, and θa = 90o (i.e. randomly distributed). The solid line is the linear best-fit to the data. 

 

Resistance Ratio and Curviness Angles 

Figure 5 shows the log-log plot of the normalized resistivity versus resistance ratio for five 

different curviness angles (θc) ranging from 0° to 81°. It can be seen from Figure 5 that as the 

nanowire curviness angle increases, so does the resistivity of the network. At a fixed curviness 

angle θc, resistivity is initially constant for nanowire-dominated networks, but increases as the 

network becomes junction-dominated. HRS to LRS resistivity ratio increases as the curviness 

angle increases. Increasing the curviness angle decreases the number of conduction paths and 

hence the connectivity of the network, which magnifies the effect of junction resistance on 

resistivity.  
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Figure 5.  Log-log plot of normalized resistivity versus resistance ratio for five different curviness angles ranging 

from 0° to 81°, as labeled by different symbols.  The other simulation parameters are n = 10 μm-2, L = 10 μm, W = 

10 μm, and θa = 90o (i.e. randomly distributed). The solid line is the linear best-fit to the data. 
 

  Conclusions 

In summary, we have used Monte Carlo simulations to study the effect of junction resistance 

on the percolation resistivity of metal nanowire networks.  We generated the curvy nanowires as 

1D width less “sticks” using 3rd-order Bézier curves.  The degree of curviness of the nanowires 

was determined by the curviness angle, which puts a geometrical constraint on the randomly 

generated locations of the two intermediate control points of the Bézier curve.  Five vertically 

stacked 2D layers were used to form the nanowire network.   The network resistivity was 

calculated assuming a resistance ratio junction resistance-dominated network over nanowire 

resistance-dominated, consistent with previous literature.   

Using these simulations, we systematically studied the interaction between the effect of 

curviness and three other nanowire/device parameters on the network resistivity, namely 

nanowire density, nanowire length, and curviness angle in the network.  In each case, we 

observed the change of the network resistivity from a junction-dominated high resistance state to 

a nanowire-dominated low resistance state. When evaluating network resistivity at different 

nanowire densities, we found that the ratio of resistivity for junction-dominated high resistance 

state to nanowire-dominated low resistance state increases as density increases. When we 

evaluated network resistivity at different nanowire lengths, we found that the ratio of resistivity 

for junction-dominated high resistance state to nanowire-dominated low resistance state 

increases as length decreases. When we evaluated network resistivity at different curviness 
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angles, we found that the ratio of resistivity for junction-dominated high resistance state to 

nanowire-dominated low resistance state increases as curviness increases. 

Our results show that nanowire density and length provide another internal knob to tailor the 

electronic properties of transparent, conductive metal nanowire networks without changing the 

volume of the nanowire material used.  Furthermore, these results are not limited to metal 

nanowire networks, but can be extended to any 2D or quasi-2D network, film, or nanocomposite 

consisting of 1D nanoelements such as carbon nanotubes, graphene nanoribbons, nanowires, and 

nanorods of different materials.  Computational studies, such as presented in this work, are an 

essential predictive tool for both developing a fundamental understanding of percolation 

transport and optimizing the electronic properties of transparent, conductive nanowire networks 

for a wide range of applications. 
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