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Abstract 

We examine two classes of enumerating discrete Morse functions on graphs.  The first, gradient vector 

fields, is examined heavily in the literature. The second examines discrete Morse functions with codomain 

in {1, …, k}.  We give formulae for the number of discrete Morse functions on specific classes of graphs 

(line, cycle, and bouquet of circles).  
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Introduction 

Discrete Morse theory was created by Robin Forman in 1995 as discretization of Morse 

Theory. (Forman, 1998)  Discrete Morse theory deals with so-called discrete Morse functions on 

regular CW-complexes, analogous to Morse functions on smooth manifolds. Under Forman’s 

definitions, there are many analogous theorems in discrete Morse theory from smooth Morse 

theory.  Discrete Morse theory has found applications in a broad range of topics including 

topological denoising (Bauer, Lange, C. & Wardetzky, 2012) and mesh compression (Lewiner, 

et al., 2004). 

In this paper we only deal with 1-dimensional regular CW-complexes, i.e. loop-free undirected 

(multi-)graphs. Any time the word “graph” is used in this paper it will be of this type. 

 

Definition 1.1. Let G be a graph.  A discrete Morse function  f : G → R is a function that assigns 

values to the edges and the vertices of G such that the following two conditions are met:  

(1) For any vertex v ∈ G, the number of incident edges e such that f (v) ≥ f (e) is at most one.  

(2) For any edge e ∈ G, the number of incident vertices v such that f (v) ≥ f (e) is at most one.  

 

For any non-trivial graph, there are infinitely many discrete Morse functions given by 

assigning any constant value m to every vertex and any other constant n > m to every edge. To 
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meaningfully count the number of discrete Morse functions on a graph, we must introduce an 

equivalence relation on discrete Morse functions or otherwise restrict the set of discrete Morse 

functions. One equivalence relation on discrete Morse functions that has been studied 

extensively is the gradient vector field.(Bauer, et al.)(Chari & Joswig, 2005)(Forman, 

1998)(Lewiner, et al., 2004)  

In Corollaries 2.3.1 and 2.3.2 we give formulas for the number of gradient vector fields on Pn, 

the path graph on n vertices and for Cn, the cycle graph on n vertices. We also give an algorithm 

to compute the number of discrete Morse functions with codomain in {1, ..., n} on both Pn and 

Cn. 

 

 

Gradient Vector Fields 

Definition 2.1. A discrete vector field is a set of pairs of incident vertices and edges such that no 

vertex or edge appears in more than one pair. 

  A common visualization for a discrete vector field is to draw an arrow from the vertex to the 

edge for any pair in the vector field. 

Definition 2.2. Let V be a discrete vector field. A V-path is a sequence of vertices and edges 

v1,e1,v2, e2,...,en−1,vn such that vi and vi+1 are both incident to ei and (𝑣𝑖, 𝑒𝑖) ∈ 𝑉. 

Definition 2.3. Let V be a vector field on a graph G. A vertex or edge is said to be critical if it is 

not in any pair in V. 

Definition 2.4. A V-path is called closed if v1 = vn. 

Definition 2.5. Let G be a graph and let f be a discrete Morse function on G. The gradient vector 

field of f is the set {{v,e} | v and e are incident and f(v) ≥ f(e)}. 

  Gradient vector fields are discrete vector fields.(Forman, 1998) It is known that a vector field V 

is a gradient vector field if and only if V contains no closed V-paths of length greater than 1. That 

Figure 1. A discrete Morse function on C5  
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is, if V contains no closed V-paths of length greater than 1, then there exists a discrete Morse 

function f whose gradient vector field is equal to V. In Proposition 3.3 of (Chari & Joswig, 2005), 

the authors note that the number of discrete gradients on a graph is equal to the number of rooted 

forests of the graph.  

 

 

Definition 2.6. Let G be a graph. For vertices u, v ∈ G we define the following six functions:  

 𝜇(𝑢) = the number of discrete vector fields on G such that u is critical.   

 𝜈(𝑢) = the number of discrete vector fields on G such that u is not critical.   

 𝜇𝜇(𝑢, 𝑣) = the number of discrete vector fields on G such that both u and v are critical. 

  

 𝜇𝜈(𝑢, 𝑣) =the number of discrete vector fields on G such that u is critical but v is not 

 critical.   

 𝜈𝜈(𝑢, 𝑣) =the number of discrete vector fields on G such that neither u nor v is critical. 

  

 𝜈𝜇(𝑢, 𝑣) = 𝜇𝜈(𝑣, 𝑢) = the number of discrete vector fields on G such that u is not critical 

and  v is critical.   

Note that 𝜇(𝑢, 𝑣) =  𝜇𝜇(𝑢, 𝑣) + 𝜇𝜈(𝑢, 𝑣) and 𝜈(𝑢, 𝑣) =  𝜈𝜇(𝑢, 𝑣) + 𝜈𝜈(𝑢, 𝑣). 

Figure 2. The gradient vector field of Figure 1  
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Definition 2.7. Let (G,u) and (H,v) be graphs with distinguished points. Define (𝐺, 𝑢) ∨ (𝐻, 𝑣) to 

be the graph with u and v identified, i.e. the wedge sum of the graphs. For convenience, we will 

refer to this as 𝐺 ∨ 𝐻. 

Proposition 2.8. Let (G,u) and (H,v) be graphs with vertices 𝑎 ∈ 𝐺 and 𝑏 ∈ 𝐻. Let 𝑎′, 𝑏′and 𝑢′ 

be the images of a,b, and u in 𝐺 ∨ 𝐻 respectively. Then the following formulae hold:   

 𝜇𝜇(𝑎
′, 𝑏′) = 𝜇𝜇(𝑎, 𝑢)𝜇𝜇(𝑣, 𝑏) + 𝜇𝜇(𝑎, 𝑢)𝜈𝜇(𝑣, 𝑏) + 𝜇𝜈(𝑎, 𝑢)𝜇𝜇(𝑣, 𝑏) 

 𝜇𝜈(𝑎′, 𝑏′) = 𝜇𝜇(𝑎, 𝑢)𝜇𝜈(𝑣, 𝑏) + 𝜇𝜇(𝑎, 𝑢)𝜈𝜈(𝑣, 𝑏) + 𝜇𝜈(𝑎, 𝑢)𝜇𝜈(𝑣, 𝑏)  

 𝜈𝜇(𝑎′, 𝑏′) = 𝜈𝜇(𝑎, 𝑢)𝜇𝜇(𝑣, 𝑏) + 𝜈𝜇(𝑎, 𝑢)𝜈𝜇(𝑣, 𝑏) + 𝜈𝜈(𝑎, 𝑢)𝜇𝜇(𝑣, 𝑏) 

 𝜈𝜈(𝑎′, 𝑏′) = 𝜈𝜇(𝑎, 𝑢)𝜇𝜈(𝑣, 𝑏) + 𝜈𝜇(𝑎, 𝑢)𝜈𝜈(𝑣, 𝑏) + 𝜈𝜈(𝑎, 𝑢)𝜇𝜈(𝑣, 𝑏) 

 𝜇(𝑢′) = 𝜇(𝑢)𝜇(𝑣) 

 𝜈(𝑢′) = 𝜇(𝑢)𝜈(𝑣) + 𝜈(𝑢)𝜇(𝑣) 

Note: This proposition holds if we replace the words “discrete vector field” by “gradient vector 

field” in Definition 2.6  

Proof. This follows immediately from the observation that any vector field on 𝐺 ∨ 𝐻 induces a 

vector field on G and on H. Vector fields on G and H induce vector fields on 𝐺 ∨ 𝐻 only if at 

least one of u or v is critical. The last two formulae are sums of the previous formulae. The note 

at the end is true because the wedge operation cannot form new cycles.  

Proposition 2.9. Let G be a graph with fixed distinct vertices u, v ∈ G. Let 𝐺′ be the graph with 

an additional edge between u and v and let 𝑢′ and 𝑣′ be the images of u and v in 𝐺′ respectively.  

Then:  

 𝜇𝜇(𝑢
′, 𝑣′) = 𝜇𝜇(𝑢, 𝑣) 

 𝜇𝜇(𝑢
′, 𝑣′) = 𝜇𝜇(𝑢, 𝑣) 

 𝜇𝜈(𝑢
′, 𝑣′) = 𝜇𝜇(𝑢, 𝑣) + 𝜇𝜈(𝑢, 𝑣) 

 𝜈𝜈(𝑢
′, 𝑣′) = 𝜈𝜈(𝑢, 𝑣) + 𝜇𝜈(𝑢, 𝑣) + 𝜈𝜇(𝑢, 𝑣) 

 𝜈𝜇(𝑢′, 𝑣′) = 𝜇𝜇(𝑢, 𝑣) + 𝜈𝜇(𝑢, 𝑣) 
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Proof. We note that in a 𝐾2 (that is, two vertices connected by an edge), there are three vector 

fields:  

(1) Both vertices are critical. 

(2) Vertex u is critical and vertex v is not critical.  

(3) Vertex v is critical and vertex u is not critical.  

(4) Let V be the set of all vector fields on G and let 𝑉′ be the set of all vector fields on 𝐺′. We 

may apply the following operations to elements of V:  

(1) If u and v are both critical, the new edge may either be critical, be paired with u or be 

paired with v. In the first case, this adds to 𝜇𝜇(𝑢
′, 𝑣′), in the second case this adds to 

𝜈𝜇(𝑢
′, 𝑣′) and in the third case this adds to 𝜇𝜈(𝑢

′, 𝑣′). 

(2) If u is critical but not v, the new edge may either be critical or be paired with u. In the 

first case this adds to 𝜇𝜈(𝑢
′, 𝑣′) and in the second case this adds to 𝜈𝜈(𝑢

′, 𝑣′).   

(3) If v is critical but not u, the new edge may either be critical or be paired with v. In the 

first case this adds to 𝜈𝜇(𝑢
′, 𝑣′) and in the second case this adds to 𝜈𝜈(𝑢

′, 𝑣′).  

(4) If neither u nor v is critical, the new edge must be critical and this adds to 𝜈𝜈(𝑢
′, 𝑣′). 

  

  Case (1) occurs 𝜇𝜇(𝑢, 𝑣) times, case (2) occurs 𝜇𝜈(𝑢, 𝑣) times, case (3) occurs 𝜈𝜇(𝑢, 𝑣) times, 

and case (4) occurs 𝜈𝜈(𝑢, 𝑣) times. Each case is disjoint, and no two cases overlap. Furthermore, 

these give all of 𝑉′. Hence the formulae above can be attained by adding up the cases.  

Proposition 2.10. Let Pn be the path graph on n vertices and let un be the first vertex and vn be 

the last vertex. Then the following formulae hold:  

 𝜇𝜇(𝑢𝑛, 𝑣𝑛) = 𝐹2𝑛−2 

 𝜇𝜈(𝑢𝑛, 𝑣𝑛) = 𝜈𝜇(𝑢𝑛, 𝑣𝑛) = 𝐹2𝑛−3 

 𝜈𝜈(𝑢𝑛, 𝑣𝑛) = 𝐹2𝑛−4 

where Fi is the i-th Fibonacci number.  



ANDREW SACK 

University of Florida | Journal of Undergraduate Research | Volume 21, Issue 1 | Fall 2019 

Proof. Consider Pn and attach a P2 with vertices x and y as in Proposition 2.8 by vertex x.  

Define    �⃗⃗� 𝑛+1 =

(

 
 

𝜇𝜇(𝑢𝑛+1, 𝑣𝑛+1)

𝜇𝜈(𝑢𝑛+1, 𝑣𝑛+1)

𝜈𝜇(𝑢𝑛+1, 𝑣𝑛+1)

𝜈𝜈(𝑢𝑛+1, 𝑣𝑛+1))

 
 
  

Then 

�⃗⃗� 𝑛+1 =

(

 
 

𝜇𝜇(𝑢′𝑛, 𝑦
′)

𝜇𝜈(𝑢′𝑛, 𝑦
′)

𝜈𝜇(𝑢′𝑛, 𝑦
′)

𝜈𝜈(𝑢′𝑛, 𝑦
′))

 
 

 

=

(

 
 

𝜇𝜇(𝑥, 𝑦) + 𝜈𝜇(𝑥, 𝑦) 𝜇𝜇(𝑥, 𝑦) 0 0

𝜇𝜈(𝑥, 𝑦) + 𝜈𝜈(𝑥, 𝑦) 𝜇𝜇(𝑥, 𝑦) 0 0

0 0 𝜈𝜇(𝑥, 𝑦) + 𝜇𝜇(𝑥, 𝑦) 𝜇𝜇(𝑥, 𝑦)

0 0 𝜇𝜈(𝑥, 𝑦) + 𝜈𝜈(𝑥, 𝑦) 𝜇𝜈(𝑥, 𝑦))

 
 

(

 
 

𝜇𝜇(𝑢𝑛, 𝑣𝑛)

𝜇𝜈(𝑢𝑛, 𝑣𝑛)

𝜈𝜇(𝑢𝑛, 𝑣𝑛)

𝜈𝜈(𝑢𝑛, 𝑣𝑛))

 
 

 

= (

2 1 0 0
1 1 0 0
0 0 2 1
0 0 1 1

)

(

 
 

𝜇𝜇(𝑢𝑛, 𝑣𝑛)

𝜇𝜈(𝑢𝑛, 𝑣𝑛)

𝜈𝜇(𝑢𝑛, 𝑣𝑛)

𝜈𝜈(𝑢𝑛, 𝑣𝑛))

 
 

 

Let 𝐾 = (

2 1 0 0
1 1 0 0
0 0 2 1
0 0 1 1

). 

Hence w⃗⃗⃗ 𝑛 = 𝐾
(𝑛−2)w⃗⃗⃗ 2 = 𝐾

(𝑛−2)(

1
1
1
0

) 

Finally, note that 𝐾3 = 3𝐾2 − 𝐾,and hence �⃗⃗� 𝑛 = 3�⃗⃗� 𝑛−1 − �⃗⃗� 𝑛−2. The above formulae satisfy 

this recurrence relation and have the appropriate initial conditions.  

Corollary 2.10.1. The number of discrete vector fields on Pn is F2n. 
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Proof. 𝐹2𝑛−2 + 𝐹2𝑛−3 + 𝐹2𝑛−3 + 𝐹2𝑛−4 = 𝐹2𝑛−1 + 𝐹2𝑛−2 = 𝐹2𝑛 

Corollary 2.10.2. The number of discrete vector fields on 𝐶𝑛 is 𝐿2𝑛, where 𝐿𝑘 is the k-th Lucas 

number. The number of gradient vector fields on 𝐶𝑛 is 𝐿2𝑛 − 2.  

Proof. Apply Proposition 2.9 to 𝑃𝑛and attach an edge to connect the endpoints u and v. Then the 

number of discrete vector fields on 𝐶𝑛 is  

𝜇(𝑢′) + 𝜈(𝑢′) = [𝜇𝜇(𝑢′, 𝑣′) + 𝜇𝜈(𝑢′, 𝑣′)] + [𝜈𝜇(𝑢′, 𝑣′) + 𝜈𝜈(𝑢′, 𝑣′)]

= [𝜇𝜇(𝑢, 𝑣) + 𝜇𝜇(𝑢, 𝑣) + 𝜇𝜈(𝑢, 𝑣)] + [𝜈𝜈(𝑢, 𝑣) + 𝜇𝜈(𝑢, 𝑣) + 𝜈𝜇(𝑢, 𝑣) + 𝜇𝜇(𝑢, 𝑣)

+ 𝜈𝜇(𝑢, 𝑣)]

= [𝐹2𝑛−2 + 𝐹2𝑛−2 + 𝐹2𝑛−3] + [𝐹2𝑛−4 + 𝐹2𝑛−3 + 𝐹2𝑛−3 + 𝐹2𝑛−2 + 𝐹2𝑛−3]

= [𝐹2𝑛] + [𝐹2𝑛−2 + 𝐹2𝑛−1 + 𝐹2𝑛−3] = [𝐹2𝑛] + [2𝐹2𝑛−1] = 𝐹2𝑛+1 + 𝐹2𝑛−1 = 𝐿2𝑛. 

Exactly two of these discrete vector fields contain closed V − paths, corresponding to the two 

paths that go around the circle. Hence the number of gradient vector fields is 𝐿2𝑛 − 2. 

Comparing this with the formula given in (Chari & Joswig, 2005) we find that 

𝐿2𝑛 =∑ 

𝑛

𝑖=0

2𝑛

2𝑛 − 𝑖
(
2𝑛 − 𝑖

𝑖
) 

. 

The number of gradient vector fields on 𝐶𝑛 for 𝑛 ∈ {2, . . . ,6} is 5,16,45,121,320. 

Corollary 2.10.3. The number of gradient vector fields on a bouquet of  n circles where the k-th 

circle has 𝑎𝑘 vertices is 

∏ 

𝑛

𝑖=1

(𝐹2𝑖 − 2) +∑ 

𝑛

𝑖=1

(2𝐹2𝑖−1) ∏  

𝑗∈[1..𝑛]∖{𝑖}

(𝐹2𝑗 − 2) 

. 

Proof. Apply Proposition 2.8.  

Discrete Morse k-Functions 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Definition 3.1. A discrete Morse k-function is a discrete Morse function with codomain in {1, 2, 

..., k}.  

Discrete Morse k-functions can be thought of as placing a digital sensor on each cell that can 

only take k different possible values. For non-trivial graphs, there is only one discrete Morse 2- 

function. We aim to count the number of discrete Morse k-functions on a graph. For several 

classes of graph we make the following definitions:  

Definition 3.2. Let G be a graph and k ∈ Z+ fixed. For vertices u, v ∈ G we define the following 

four k × k matrices:  

 𝑀𝑀(𝑢, 𝑣) = the matrix such that entry i, j is the number of discrete Morse k-functions f 

such that f(u) = i, f(v) = j and both u and v are critical.   

 𝑀𝑁(𝑢, 𝑣) = the matrix such that entry i, j is the number of discrete Morse k-functions f 

such that f(u) = i, f(v) = j, u is critical and v is not critical.   

 𝑁𝑁(𝑢, 𝑣) = the matrix such that entry i, j is the number of discrete Morse k-functions f 

such that f(u) = i, f(v) = j and neither u nor v is critical.   

 𝑁𝑀(𝑢, 𝑣) = the matrix such that entry i, j is the number of discrete Morse k-functions f 

such that f(u) = i, f(v) = j, u is not critical and v is critical.   

Proposition 3.3. Let (G,u) and (H,v) be graphs with distinsuihed vertices and let a ∈ G and b ∈ 

H. Let a′,b′ be the images of a,b in 𝐺 ∨ 𝐻 respectively. Then the following formulae hold:   

 𝑀𝑀(𝑎′, 𝑏′) = 𝑀𝑀(𝑎, 𝑢)𝑀𝑀(𝑣, 𝑏) + 𝑀𝑀(𝑎, 𝑢)𝑁𝑀(𝑣, 𝑏) + 𝑀𝑁(𝑎, 𝑢)𝑀𝑀(𝑣, 𝑏)  

 𝑀𝑁(𝑎′, 𝑏′) = 𝑀𝑀(𝑎, 𝑢)𝑀𝑁(𝑣, 𝑏) + 𝑀𝑀(𝑎, 𝑢)𝑁𝑁(𝑣, 𝑏) + 𝑀𝑁(𝑎, 𝑢)𝑀𝑁(𝑣, 𝑏)  

 𝑁𝑀(𝑎′, 𝑏′) = 𝑁𝑀(𝑎, 𝑢)𝑀𝑀(𝑣, 𝑏) + 𝑁𝑀(𝑎, 𝑢)𝑁𝑀(𝑣, 𝑏) + 𝑁𝑁(𝑎, 𝑢)𝑀𝑀(𝑣, 𝑏)  

 𝑁𝑁(𝑎′, 𝑏′) = 𝑁𝑀(𝑎, 𝑢)𝑀𝑁(𝑣, 𝑏) + 𝑁𝑀(𝑎, 𝑢)𝑁𝑁(𝑣, 𝑏) + 𝑁𝑁(𝑎, 𝑢)𝑀𝑁(𝑣, 𝑏)  

Proof. A discrete Morse function on G and a discrete Morse function on H form a discrete Morse 

function in the quotient only if the vertices agree in value and no more than one edge takes a 

value greater than a vertex.  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Proposition 3.4. Let a and b be the vertices of P2. The following formulae hold:  

• The i, j entry in 𝑀𝑀(𝑎, 𝑏) is k - max(i, j).   

• The i, j entry in 𝑀𝑁(𝑎, 𝑏)is max(0, j−i).   

• The i, j entry in 𝑁𝑀(𝑎, 𝑏) is max(0,i− j).   

• The i, j entry in 𝑁𝑁(𝑎, 𝑏) is 0.   

Proof.   

• The i, j entry in 𝑀𝑀(𝑎, 𝑏) is the number of integers in {1,...,k} greater than both i and j.   

• The i, j entry in 𝑀𝑁(𝑎, 𝑏) is the number of integers in {1,...,k} greater than i and less than or 

equal to j.   

• The i, j entry in 𝑁𝑀(𝑎, 𝑏) is the number of integers in {1,...,k} less than or equal to i and 

 greater than j.   

• The i, j entry in 𝑁𝑁(𝑎, 𝑏) is 0 because the value of the edge cannot be less than or equal to 

 both of the vertices.   

Proposition 3.4. The following is an algorithm with proof to count the number of discrete Morse 

k-functions on Pn and on Kn. 

Let an and bn the initial and terminal vertices of Pn for n ≥ 2. By Proposition 3.3, the following 

formulae hold:  

𝑀𝑀(𝑎𝑛+1, 𝑏𝑛+1) = 𝑀𝑀(𝑎2, 𝑏2)𝑀𝑀(𝑎𝑛, 𝑏𝑛) + 𝑀𝑀(𝑎2, 𝑏2)𝑁𝑀(𝑎𝑛, 𝑏𝑛) + 𝑀𝑁(𝑎2, 𝑏2)𝑀𝑀(𝑎𝑛, 𝑏𝑛) 

𝑀𝑁(𝑎𝑛+1, 𝑏𝑛+1) = 𝑀𝑀(𝑎2, 𝑏2)𝑀𝑁(𝑎𝑛, 𝑏𝑛) + 𝑀𝑀(𝑎2, 𝑏2)𝑁𝑁(𝑎𝑛, 𝑏𝑛) + 𝑀𝑁(𝑎2, 𝑏2)𝑀𝑁(𝑎𝑛, 𝑏𝑛) 

𝑁𝑀(𝑎𝑛+1, 𝑏𝑛+1) = 𝑁𝑀(𝑎2, 𝑏2)𝑀𝑀(𝑎𝑛, 𝑏𝑛) + 𝑁𝑀(𝑎2, 𝑏2)𝑁𝑀(𝑎𝑛, 𝑏𝑛) + 𝑁𝑁(𝑎2, 𝑏2)𝑀𝑀(𝑎𝑛, 𝑏𝑛) 

𝑁𝑁(𝑎𝑛+1, 𝑏𝑛+1) = 𝑁𝑀(𝑎2, 𝑏2)𝑀𝑁(𝑎𝑛, 𝑏𝑛) + 𝑁𝑀(𝑎2, 𝑏2)𝑁𝑁(𝑎𝑛, 𝑏𝑛) + 𝑁𝑁(𝑎2, 𝑏2)𝑀𝑁(𝑎𝑛, 𝑏𝑛) 
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Then we can write as block matrices: 

(

 

𝑀𝑀(𝑎𝑛+1, 𝑏𝑛+1)

𝑀𝑁(𝑎𝑛+1, 𝑏𝑛+1)

𝑁𝑀(𝑎𝑛+1, 𝑏𝑛+1)

𝑁𝑁(𝑎𝑛+1, 𝑏𝑛+1))

 =

(

 

𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2) 0

0 𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2)

𝑁𝑀(𝑎2, 𝑏2) + 𝑁𝑁(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2) 0

0 𝑁𝑀(𝑎2, 𝑏2) + 𝑁𝑁(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2))

 

(

 

𝑀𝑀(𝑎𝑛, 𝑏𝑛)

𝑀𝑁(𝑎𝑛, 𝑏𝑛)

𝑁𝑀(𝑎𝑛, 𝑏𝑛)

𝑁𝑁(𝑎𝑛, 𝑏𝑛))

  

We can simplify with 𝑁𝑁(𝑎2, 𝑏2)  =  0 to get 

(

 

𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2) 0

0 𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2)

𝑁𝑀(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2) 0

0 𝑁𝑀(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2))

 

(

 

𝑀𝑀(𝑎𝑛, 𝑏𝑛)

𝑀𝑁(𝑎𝑛, 𝑏𝑛)

𝑁𝑀(𝑎𝑛, 𝑏𝑛)

𝑁𝑁(𝑎𝑛, 𝑏𝑛))

  

Write 𝐾 =

(

 

𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2) 0

0 𝑀𝑀(𝑎2, 𝑏2) + 𝑀𝑁(𝑎2, 𝑏2) 0 𝑀𝑀(𝑎2, 𝑏2)

𝑁𝑀(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2) 0

0 𝑁𝑀(𝑎2, 𝑏2) 0 𝑁𝑀(𝑎2, 𝑏2))

  

Then 

(

 

𝑀𝑀(𝑎𝑛, 𝑏𝑛)

𝑀𝑁(𝑎𝑛, 𝑏𝑛)

𝑁𝑀(𝑎𝑛, 𝑏𝑛)

𝑁𝑁(𝑎𝑛, 𝑏𝑛))

 = 𝐾𝑛−2

(

 

𝑀𝑀(𝑎2, 𝑏2)

𝑀𝑁(𝑎2, 𝑏2)

𝑁𝑀(𝑎2, 𝑏2)

𝑁𝑁(𝑎2, 𝑏2))

  

The number of discrete Morse k-functions on Pn is the sum of all the entries in (𝑀𝑀(𝑎𝑛) +

𝑀𝑁(𝑎𝑛) + 𝑁𝑀(𝑎𝑛) + 𝑁𝑁(𝑎𝑛)).   

The number of discrete Morse k-functions on Cn is Tr(𝑀𝑀(𝑎𝑛+1) + 𝑀𝑁(𝑎𝑛+1) + 𝑁𝑀(𝑎𝑛+1)). 

This follows from the fact that we can attach the two ends of the path only if their value is equal 

and at least one of them is critical.  

The number of discrete Morse 4-functions on Cn for n ∈ {2, ..., 6} are 46, 336, 2318, 16071, 

111520.  

Further Questions 

(1) Are there formulae for the number of discrete Morse k-functions for other classes of 

graphs? (e.g. complete, complete bipartite, etc.)  
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(2) Is there an efficient algorithm for computing the number of discrete Morse k-functions on 

general graphs?  

(3) How many gradient vector fields and discrete Morse k-functions are there on 𝐶𝑛  up to 

symmetry by 𝑍𝑛? By 𝐷2𝑛?  

(4) How many gradient vector fields and discrete Morse k-functions are there on higher 

dimensional regular CW-complexes? On the standard CW-complex for 𝑀𝑔?  
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