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Abstract 
It was shown by [2] how bulk operators in the AdS/CFT correspondence can be represented on the 
boundary analogously to the way logical qubits are represented in an encoded subspace in quantum error 
correction. Then in [1]  holographic tensor networks that serve as toy models of the bulk boundary 
correspondence were introduced. This paper reviews some of the developments of [1] and [2]. Then, it is 
demonstrated explicitly how to construct perfect tensors, which are essential to the tensor networks 
mentioned in [2]. Lastly, a new example of a holographic quantum error-correcting code based on an 
eight index perfect tensor is presented.  
 
 

Introduction 

 In the Anti-de Sitter Conformal Field Theory Correspondence, a standard result is that 

a bulk operator 𝜙𝜙(𝑥𝑥) can be represented as 𝜙𝜙(𝑥𝑥) = ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥;𝑌𝑌)𝑂𝑂(𝑌𝑌) to leading order in 1
𝑁𝑁

 

where x is a bulk point and the integral is taken over the boundary. The smearing function 

𝐾𝐾(𝑥𝑥;𝑌𝑌) can be chosen to have support only when 𝑥𝑥 and 𝑌𝑌 are spacelike separated. Thus only a 

portion of the boundary is needed to construct a specific operator. This is depicted in Figure 1 for 

AdS3, where any local bulk operator in the blue area can be represented on the intersection of the 

boundary of the blue area with the boundary of the entire space. 
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The requirement of only a portion of a boundary to reconstruct an operator is 

reminiscent of quantum error correction as pointed out in [2]. A quantum error correcting code 

typically maps a state from one space to a state in a larger space such that there is some 

redundancy in the encoded state. This allows for an operator acting only on a portion of a state to 

have the same action as an operator acting on the entire state, which is analogous to the 

reconstruction of bulk operators on the boundary explained above. The holographic codes 

proposed in [1] demonstrate this analogy. The encoding maps, when viewed as tensor networks, 

closely resemble the picture of AdS3 pictured above. The tensors used in these networks are 

perfect tensors, which will be explained below. Then, a link between perfect tensors and classical 

coding theory is demonstrated. Lastly, a particular perfect tensor is be presented and a 

holographic code constructed from it. 

AME States and Perfect Tensors 

To understand the tensor networks proposed in [1], we must first explain perfect tensors. 

An isometry 𝑇𝑇:𝐻𝐻 → 𝐻𝐻′ is a linear mapping from one Hilbert space to another that preserves the 

inner product. This is only possible if the dimension of 𝐻𝐻 is less than or equal to the dimension 

of 𝐻𝐻′. 𝑇𝑇 can be viewed as a two index tensor, which we call an isometric tensor. The 𝐻𝐻 index is 

the incoming index and the 𝐻𝐻′ index is the outgoing index. isometric tensors have the property 

that an operator acting on its incoming index can be replaced by an equal norm operator acting 

on its outgoing index. That is 𝑇𝑇𝑇𝑇 = 𝑂𝑂′𝑇𝑇 for some 𝑂𝑂′. 

Figure 1. Rindler Wedge in AdS Space. Any bulk local bulk 
operator in the blue area can be constructed to have support on 

intersection of the boundary of the blue area with the boundary of the 
entire space. The interior lines are lightlike geodesics. 
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An important class of isometric tensors is perfect tensors. A 2𝑛𝑛 index tensor is perfect if 

any bi-partition of its indices results in an isometric tensor from the set of smaller indices to the 

set of larger indices. This property allows one to push an operator acting on an incoming index 

through a 2𝑘𝑘 index perfect tensor onto 𝑘𝑘 indices. This is demonstrated in Figure 2. 

 

 

 

 
 

 
 
 
 
 
 

 

 

There is a correspondence between perfect tensors and quantum information. An 

Absolutely Maximally Entangled (AME) state is a state ∑ 𝑐𝑐𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑛𝑛|𝑗𝑗1, 𝑗𝑗2, . . 𝑗𝑗𝑛𝑛⟩𝑗𝑗𝑖𝑖  in 𝐻𝐻 = 𝐻𝐻1 ⊗

𝐻𝐻2 ⊗ …⊗𝐻𝐻𝑛𝑛with the property that the reduced density matrix on 𝑛𝑛′ ≤ �𝑛𝑛2� parties is maximally 

mixed. That is the reduced density matrix is proportional to the identity. If 𝑛𝑛 is even, then the 

tensor 𝑐𝑐𝑗𝑗1,𝑗𝑗2,…𝑗𝑗𝑛𝑛 is a perfect tensor. We label an AME state as 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) where 𝑛𝑛 is the number 

of parties and 𝑞𝑞is the dimension of the 𝐻𝐻𝑖𝑖, called the local dimension. A qubit is just an element 

of a two dimensional Hilbert Space and a qudit is an element of a 𝑑𝑑 dimensional space. 

Therefore an 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛,𝑑𝑑) state has 𝑛𝑛 qudits. 

Perhaps the most well known example of an AME state is the EPR pair 1
√2

(|00⟩ + |11⟩). 

Another example would be the GHZ state 1
√2

(|000⟩ + |111⟩) 

    A particular class of AME states is minimal support AME states. Minimal support 

AME states have support on 𝑞𝑞ℎ�
𝑛𝑛
2� states, where ℎ(𝑥𝑥) is the greatest integer less than or equal to 

𝑥𝑥. There is a correspondence between minimal support AME states and maximum distance 

separating (MDS) codes, which will now be introduced. 

 

Figure 2. A Tensor network depiction of a perfect tensor with an operator acting on its incoming index. Each 
square represents a tensor and each arrow/line an index. Here A is a perfect tensor, so the diagrams are equivalent. 

The left diagram shows an operator acting on the incoming index of A and the right diagram shows an operator 
acting on the outgoing indices of A. If A were perfect the right diagram could actually be chosen to have an 

operator acting on only two of the indices. 
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Coding Theory and MDS Codes 

A linear code is a subspace of order 𝑞𝑞𝑘𝑘 of 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑛𝑛 where 𝐺𝐺𝐺𝐺(𝑞𝑞) is the Galois field of 

order 𝑞𝑞 and thus 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑛𝑛 is the Cartesian product with itself 𝑛𝑛 times. The elements in the 

subspace are called the words of the code. The distance between two words 𝑥𝑥,𝑦𝑦 ∈ 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑛𝑛 is the 

number of non-zero elements in 𝑥𝑥 − 𝑦𝑦. The code can be thought of as mapping elements from 

𝐺𝐺𝐺𝐺(𝑞𝑞)𝑘𝑘 to the subspace in 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑛𝑛. The distance of a code is the minimal distance between any 

two words in the code. The weight of a word is the number on nonzero components of the word. 

A code of subspace order 𝑞𝑞𝑘𝑘 in 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑛𝑛 with distance 𝑑𝑑 is denoted [𝑛𝑛,𝑘𝑘,𝑑𝑑]. 

 For a linear [𝑛𝑛,𝑘𝑘,𝑑𝑑] code, the generator matrix 𝐺𝐺 is the matrix formed by taking the 

words of the code as rows. Thus 𝐺𝐺 is a 𝑘𝑘 × 𝑛𝑛matrix and every code word can be written as 𝑣𝑣𝑣𝑣, 

where 𝑣𝑣 ∈ 𝐺𝐺𝐺𝐺(𝑞𝑞)𝑘𝑘. 

The Singleton bound is a bound on classical codes that states for linear code 𝑑𝑑 ≤ 𝑛𝑛 − 𝑘𝑘 +

1, and a code saturating the bound is called a maximum distance separating (MDS) code. 

Examples of MDS codes include Reed-Solomon Codes and Generalized Reed-Solomon Codes. 

Details on these codes can be found in [4] and [5] respectively. 

Given any [𝑛𝑛,𝑘𝑘,𝑑𝑑] MDS code over 𝐺𝐺𝐺𝐺(𝑞𝑞) with generator matrix 𝐺𝐺, the state 

∑ |𝑣𝑣𝑣𝑣⟩𝑣𝑣∈𝐺𝐺𝐺𝐺(𝑞𝑞)𝑘𝑘  is a minimal support AME state. For finite fields of order 𝑝𝑝𝑘𝑘 where 𝑘𝑘 ≥ 2, to 

translate the words into spin states, we interpret each letter to be a state in the tensor product |𝑝𝑝⟩𝑘𝑘, 

for example, the states |0⟩,|1⟩and |𝑥𝑥 + 1⟩ where 0, 𝑥𝑥 + 1 ∈ 𝐺𝐺𝐺𝐺(4)can be interpreted as 

|00⟩,|10⟩and |11⟩respectively. 

As proved in theorem 2 in [3] there always exists an 𝑛𝑛 party AME state for a large 

enough local dimension. This can be proven through the use of Reed-Solomon codes. Therefore 

there exists a 2𝑘𝑘 index perfect tensor for any positive integer 𝑘𝑘. 

Results 

An eight party AME state can be constructed from 𝑛𝑛 = 8 MDS code. One such code is 

the generalized Reed-Solomon Code GRS8,4 over 𝐺𝐺𝐺𝐺(13) that has generator matrix   
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 Let 𝐶𝐶 be the code word subspace of GRS8,4. Then the tensor 𝐴𝐴𝑣𝑣 , where 𝐴𝐴𝑣𝑣 = 1 if 𝑣𝑣 ∈ 𝐶𝐶and 

𝐴𝐴𝑣𝑣 = 0 if 𝑣𝑣 ∈ 𝐺𝐺𝐺𝐺(13)𝑛𝑛 ∖ 𝐶𝐶, is an eight index perfect tensor.  

Thus we have a perfect tensor 𝐴𝐴 with eight indices constructed from an MDS code. We can then 

construct a network using the (7 3 2) regular heptagon tiling of the hyperbolic plane shown in 

figure 3. We interpret each heptagon as an eight index perfect tensor with one uncontracted index 

going into the page the seven contracted indices as the blue figures. Since the network cannot go 

to infinity, the network must be truncated at some layer. If a boundary heptagon has one contracted 

index to the previous layer then it has six uncontracted indices. If a boundary heptagon has two 

contracted index to the previous layer then it has five uncontracted indices. The network is an 

isometry from the bulk indices to the uncontracted indices on the boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the tiling the tensors are organized into layers. Call the center the zeroth layer. Let 𝑓𝑓𝑛𝑛 

be number of tensors at layer 𝑛𝑛 with one index connection to the previous layer and let 𝑔𝑔𝑛𝑛 be the 

Figure 3. The (7 3 2) tiling of the hyperbolic plane. As a tensor network, each red 
heptagon represents a perfect tensor. Each heptagon has an uncontracted index going 
into the page that represents a bulk qudit. The blue areas represent a contracted index 
between two perfect tensors. At some point the number network is truncated, and the 

boundary heptagons then have uncontracted indices pointed outwards. These 
uncontracted indices are the physical qudits. 
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number of tensors at layer 𝑛𝑛 with two indices connected to the previous layer. Then 𝑓𝑓𝑛𝑛 and 𝑔𝑔𝑛𝑛 

obey the recursion relation 

 

Since 𝑓𝑓1 = 7 and 𝑔𝑔1 = 0 the recursion is solved by 

 

If the code has a total of 𝑛𝑛 layers then it has 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6𝑓𝑓𝑛𝑛 + 5𝑔𝑔𝑛𝑛 qudits on the boundary. 
The number of bulk qudits is  

 

For large 𝑛𝑛  

 

It is then possible to calculate the asymptotic rate to be approximately 

 

    Given an operator acting on the center qudit what is the minimum portion of the 

boundary needed to construct the operator on the boundary? Each heptagon has five or six 

outgoing legs and only four outgoing indices are required to push the operator onto, hence there 

is a choice of which legs to push the operator on. We can always make the best choices and thus 

recover a narrower wedge that the operator is pushed through. 

If we truncate at the 𝑛𝑛𝑛𝑛ℎ layer then the number of boundary heptagons with boundary 

indices which the operator will have support on satisfies the following recursion relation  
 

 
 

    This can be seen as the tensors on the outer edge of the wedge do not have the 

operator pushed onto their outer indices. 

This recursion is solved by  
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The number of qudits needed to construct the operator is 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6𝑓𝑓𝑛𝑛 + 5𝑔𝑔𝑛𝑛– 4. 

Numerical results show the fraction of bulk qudits needed to reconstruct the center operator is  

 
 

Conclusion 

It was shown explicitly how to construct perfect tensors that can then be used for 

holographic quantum codes. The fact that there always exists a perfect tensor with any indices 

given a large enough local dimension allows a variety of holographic codes to be constructed. 

These perfect tensors can be used in tensor networks based on certain hyperbolic tilings in order 

to create toy models of AdS/CFT. In the heptagon code, we found the minimal support of 

operators corresponding to center qudits to be relatively close to the AdS/CFT correspondence 

value of one half The heptagon code can protect from more erasures than the pentagon code in 

[1]. Unfortunately the heptagon code requires much more overhead as the rate is much less than 

that of the pentagon code. This is expected as the fraction of the indices needed to support an 

incoming operator is less than that for a six index perfect tensor. Thus when pushing operators to 

the boundary one can pick a narrower wedge than that of the pentagon code. 
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