Is Bradykinin 1-5 a Reliable Biomarker for Pain in Dogs?


  • Rafael Andrés David Fernández Ministry for the Ecological Transition and the Demographic Challenge
  • Óscar Piédrola Negreira
  • Darío Cabañés Rodríguez
  • Susana Ramírez Rodríguez
  • M José Montes Martín
  • Ana Adela Pérez Fuentes
  • José Antonio Blázquez Ranquel
  • Víctor Briones Dieste
  • Ngaio Lacey Richards
  • Carmen Bárcena Asens


BK 1-5, dog, mistreatment, plasma.


Animal pain and suffering have long been evaluated in subjective terms, due to the inherent challenge of quantifying the signs. Such resources would be integral for legal purposes, as in the pursuit of cases of suspected animal mistreatment. In that spirit, and with focus on dogs, the present study sought to evaluate the viability of bradykinin (BK 1-5) as a biomarker for pain, in canine plasma. This work was based in central Spain. The main goal of this initiative was to determine whether BK 1-5 level by itself could be used as a biomarker for dogs with pain.

In total, 26 dogs that were either patients of a veterinary clinic, or that were admitted to a local shelter with known history, were sampled for this study. The dogs were categorized into one of three distinct groups, namely those: without apparent mistreatment; diagnosed with a ‘painful’ illness and medicated against it; allegedly having been mistreated or neglected (e.g., hoarding, physical abuse). Although plasma volume issues precluded detection in individual samples, BK 1-5 was detected in pooled/group samples (n = 3), at concentrations of: 2.26 fmol/ml (Gp1), 2.66 fmol/ml (Gp 2), and 1.72 fmol/ml (Gp 3). The role of sex and age of each dog, and the types of individual medication (where applicable) was also considered relative to observed sources of variation in the measurements. Lessons learned during this exploratory study are drawn from, including the opportunistic identification of other potentially promising biomarkers. Recommendations for further work and exploration are also offered.


Bhoola, K. D., Figueroa, C. D., Worthy, K. (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. (44), 1-80.

Brierley, S., Hughes, P., Harrington, A., & Blackshaw, L. (2012). Innervation of the gastrointestinal tract by spinal and vagal afferent nerves. Physiology of the Gastrointestinal Tract, 703-701.

Bowma BN, Griffin JH (1997). Human blood coagulation factor XI: purifica tion, properties, and mechanism of activation by factor XII. J Biol Chem 1977;252:6432-7.

Bujak-Giżycka, B., Olszanecki, R., Madej, J., Suski, M., Gębska, A., & Korbut, R. (2011). Metabolism of bradykinin in aorta of hypertensive rats. Acta Biochimica Polonica, 58(2), 199-202.

Bumpus, F. M., Smeby, R. R., Page, I. H., & Khairallah, P. A. (1964). Distribution and metabolic fate of angiotensin II and various derivatives. Canadian Medical Association Journal, 90(4), 190.

Chen, L.M., Chung, P., Chao, S., Chao, L. & Chao, J. (1992). Differential regulation of kininogen gene expression by estrogen and progesterone in vivo. Biochimica et Biophysica Acta, 1131(2), 145-151.

Cugno, M., Agostoni, P., Brunner, H. R., Gardinali, M., Agostoni, A., & Nussberger, J. (2000). Plasma bradykinin levels in human chronic congestive heart failure. Clinical Science, 99(5), 461-466.

Cyr, M., Lepage, Y., Blais, C., Gervais, N., Cugno, M., Rouleau, J.-L. & Adam, A. (2001). Bradykinin and des-Arg9-bradykinin metabolic pathways and kinetics of activation of human plasma. American Journal of Physiology - Heart and Circulatory Physiology, 281(1), H275–283.

Décarie, A & Raymond, P & Gervais, Nzi & Couture, Réjean & Adam, A. (1996). Serum interspecies differences in metabolic pathways of bradykinin and [des-Arg9] BK: Influence of enalaprilat. American Journal of Physiology. 271(4 pt. 2). H1340-7.

Edgerton, D. S., Cherrington, A. D., Neal, D. W., Scott, M., Lautz, M., Brown, N. & Strack, T. R. (2009). Inhaled insulin is associated with prolonged enhancement of glucose disposal in muscle and liver in the canine. Journal of Pharmacology and Experimental Therapeutics, 328(3), 970-975.

Ferreira, S. H., & Vane, J. R. (1967). The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. British Journal of Pharmacology and Chemotherapy, 30(2), 417-424.

Goicoechea, C. & Martín, M.I. (2006). Mecanismos periféricos y centrales del dolor. Reumatología Clínica. 2 (S1), s5-s9.

Hargreaves, K. M., Troullos, E. S., Dionne, R. A., Schmidt, E. A., Schafer, S. C., & Joris, J. L. (1988). Bradykinin is increased during acute and chronic inflammation: therapeutic implications. Clinical Pharmacology & Therapeutics, 44(6), 613-621.

Jacobson S, Kritz M. (1967). Some data on two purified kininogens from human plasma. British Journal of Pharmacology and Chemotherapy, 29, 25-36.

Kaplan A.P., Joseph K., Shibayama Y., Nakazawa Y., Ghebrehiwet B., Reddigari S, et al. (1998). Bradykinin formation—plasma and tissue pathways and cellular interactions. Clinical Review in Allergy and Immunology, 16, 403-29.

Kaplan, A. P., Joseph, K., & Silverberg, M. (2002). Pathways for bradykinin formation and inflammatory disease. Journal of allergy and clinical immunology, 109(2), 195-209.

Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanshi S. (1985). Structural organization of the human kininogen gene and a model

for its evolution. J Biol Chem;260:8610-7.

Kurachi K, Davie EW (1977). Activation of human factor XI (partial thrombo plastin antecedent) by factor XII (activated Hageman factor). Biochemistry ;16:5831-9.

Levine J., Basbaum A., (1987). The peripheral nervous system and the inflammatory process. Pain, 30 (4), S109.

Mach, M. F. (2006). Fisiopatologia del dolor. Societat Catalana de Anestesiologia, Reanimaicó i Terapéutica del Dolor.

Madeddu, P., Glorioso, N., Maioli, M., Demontis, M.P., Varoni, M.V., Anania, V., Xiong, W., Chai, K. & Chao, J. (1991). Regulation of rat renal kallikrein expression by estrogen and progesterone. Journal of Hypertension, 9 (6), s244-s245.

Mandle RJ, Colman RW, Kaplan AP (1976). Identification of prekallikrein and high molecular weight kininogen as a complex in plasma. Proc Natl Acad Sci;73:4179-83.

Mandle RJJ, Kaplan AP. (1997). Hageman factor substrates II. Human plasma prekallikrein. Mechanism of activation by Hageman factor and partici pation in Hageman factor-dependent fibrinolysis. J Biol Chem;252:6097-104.

Margolius H.S. (1998). Tissue kallikreins. Structure, regulation, and participation in mammalian physiology and disease. Clinical Review in Allergy and Immunology, 16(4), 337-49.

Melnichuk, O. (2020). Pain Biomarkers with Potential Applications for Dogs Preliminary Research Summary.

Mueller-Esterl W, Rauth G, Lottspeich F, Kellermann J, Henschen A (1985). Limited proteolysis of human low molecular mass kininogen by tissue kallikrein. Isolation and characterization of the heavy and light chains. Eur J Biochem 1985;149:15-22

Murphey, L. J., Hachey, D. L., Oates, J. A., Morrow, J. D., & Brown, N. J. (2000). Metabolism of bradykinin in vivo in humans: identification of BK1-5 as a stable plasma peptide metabolite. Journal of Pharmacology and Experimental Therapeutics, 294(1), 263-269.

Murphey, L. J., Hachey, D. L., Vaughan, D. E., Brown, N. J., & Morrow, J. D. (2001). Quantification of BK1-5, the stable bradykinin plasma metabolite in humans, by a highly accurate liquid-chromatographic tandem mass spectrometric assay. Analytical Biochemistry, 292(1), 87-93.

Olguín Riadi, M. A. (2005). Estudios de la interacción entre paracetamol y meloxicam en dolor térmico agudo [Unpublished bachelor’s thesis]. Universidad de Chile.

Pérez et al. (2005) Increased kinin levels and decreased responsiveness to kinins during aging. The Journals of Gerontology: Series A, 60(8), 984-90.

Proudler, A.J., Ahmed, A., Crook, D., Fogelman, L., Rymer, J.M. & Stevenson, J.C. (1995). Hormone replacement therapy and serum angiotensin-converting enzyme activity in postmenopausal women. Lancet, 346 (8967), 89-90.

Raja SN, Campbell JN, Meyer R.A. (1984). Evidence for different mechanisms of primary and secondary hyperalgesis following heat injury to the glabrous skin. Brain, 107 (pt.4), 1179-88

Sala Cunill, A. (2013). Mediadores mastocitarios durante la anafilaxia utilidad y limitaciones de la triptasa como marcador diagnóstico actual e implicación del sistema de contacto y de la coagulación en la anafilaxia [Unpublished doctoral dissertation]. Universidad Autónoma de Barcelona.

Satake et al. (1972). Hemodynamic change and bradykinin levels in plasma and lymph during experimental acute pancreatitis in dogs, Annals of Surgery, 178 (5), 659-662.

Silverberg M, Dunn JT, Garen L, Kaplan AP. (1980). Autoactivation of human Hageman factor. J Biol Chem;255:7281-6.

Takagaki Y, Kitamura N, Nakanishi S. (1985). Cloning and sequence analysis of

cDNAs for high molecular weight and low molecular weight prekinino gen. J Biol Chem 1985;260:8601-9

Tankersley DL, Finlayson JS. (1984). Kinetics of activation and autoactivation of factor XII. Biochemistry;23:273-9.

Thompson RE, Mandle RJ, Kaplan AP (1977). Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest;60:1376-80.

Williams, A. C. D. C., & Craig, K. D. (2016). Updating the definition of pain. Pain, 157(11), 2420-2423.





Domestic animal