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Abstract

We are interested in building and deploying service mo-
bile robots to assist with arbitrary end-user tasks in ev-
eryday environments. In such open-world settings, how
can we ensure that robots 1) are robust to environmen-
tal changes; 2) navigate the world in ways consistent
with social and other unwritten norms; and 3) correctly
complete the tasks expected of them? In this work, we
survey these technical challenges and present several
promising directions to address them. To “get it right”,
robots will have to reason about unexpected sources of
failures in the real world and learn to overcome them;
glean appropriate contextual information from percep-
tion to understand how to navigate in the world; and
infer what correct task execution actually entails.

Motivation
We are approaching the golden era of robotics — we are fi-
nally starting to see robots in homes, hospitals, and on side-
walks. It may be tempting to declare victory, but in fact, we
are still far from being able to truly rely on our robot assis-
tants to consistently and reliably complete their tasks in the
real world. A home robot may exhibit precise navigation un-
der nominal circumstances, but moving the couch around, or
even dropping a few unfortunately placed backpacks is suf-
ficient to confuse the robot about its location in the world,
and waylay its ability to navigate to the kitchen. A delivery
robot may be fully capable of robustly traversing a clearly
marked sidewalk on a well-lit sunny day, but ask it to deliver
a package in the rain, and it may slide off the sidewalk — or
perhaps even trample the customer’s precious petunias in its
zeal to get straight to the door. Beyond navigation, a service
robot may also fail to correctly complete tasks requested of
it — when asked to find a vacant conference room with a
white board, it may come back with no options, or options
that are not vacant, or one with no whiteboard.

There are many ways in which a service mobile robot
may fail to understand how to “get it right” in various envi-
ronments (Figure 1). The underlying causes for such limita-
tions, and the open research questions that arise from them,
are myriad, and in this work we survey three key aspects
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Figure 1: Teaching robots to “get it right” in environments ranging
from indoor offices to offroad settings, and outdoor sidewalks.

of the problem: 1) competence-aware autonomy; 2) context-
aware navigation; and 3) learning to perform end-user tasks.

Competence-Aware Autonomy is the ability of a robot
to reason about its limitations and to adapt its behavior to
overcome them. This includes reasoning about novel limita-
tions discovered at runtime, going beyond what it may have
seen or been trained with during development. It also re-
quires the robot to reason about what actions it can take to
overcome these novel limitations, and how to plan to com-
plete tasks to minimize the impact of these limitations. To
exhibit competence-aware autonomy, a robot must be able
to autonomously discover and reason about limitations in de-
ployment environments and adapt its behavior to overcome
them. A competence-aware robot should thus, for example,
be capable of autonomously discovering that a wet marble
sidewalk leads to reflective and slippery surfaces that pose
challenges to visual navigation, and adapt its behavior to
pick alternate routes when possible, or slow down on the
wet marble sidewalk if no other route is available.

Context-Aware Navigation is the ability of a robot to
identify key relevant factors in its environment for the sit-
uation at hand, and to use this information to modify its nav-
igation behavior. This is an essential skill for navigating in
dense urban environments — if a sidewalk has a temporary
hazard such as a fallen tree, a last-mile delivery robot should
be able to reason about when it is safe to step onto the road
to bypass it. When navigating on a university campus, the
robot should step aside to let delivery vehicles pass, move
with the flow of the crowd of pedestrians in accordance with
social norms, and avoid driving on the grass when a paved
path is available. Context-aware navigation thus requires the
robot to perceive the relevant context, and to reason about
how to modify its navigation behavior based on this context.



While it may be tempting to pre-specify all potential objects
and entities of relevance for context-aware navigation, this
is infeasible in practice since the real world will inevitably
present novel objects and entities. An open research ques-
tion is thus how to both perceive and reason about context
in a way that generalizes to novel scenarios — new objects,
entities, and environments.

Learning to Perform End-User Tasks is the ability
of a robot to learn to perform tasks that are not explic-
itly specified during development. This may include learn-
ing from demonstrations, from natural language commands,
from teleoperation, or from combinations of these. The chal-
lenges here are to learn from limited demonstrations, to be
robust to noisy or partial demonstrations, to learn how to
generalize the learned task to novel situations, and to ensure
that the learned task meets the users’ expectations.

In this paper, we review recent work in these three areas,
present several promising directions to address them, and
discuss open challenges and avenues for future work. Col-
lectively, these three aspects of “getting it right” are essential
for building and deploying service mobile robots to assist
with arbitrary end-user tasks in everyday environments.

Competence-Aware Autonomy
Robots that are deployed in the real world over extended
durations will inevitably encounter novel failure modes
that were not anticipated during development. The goal
of competence-aware autonomy is to enable robots to au-
tonomously discover and reason about such failures, and to
adapt their behavior to overcome them. Failures of percep-
tion may lead to erroneous state estimates (e.g., obstacle de-
tection missing a thin reflective chair), while failures of plan-
ning may lead to suboptimal or dangerous actions (e.g., driv-
ing too fast on a slippery surface). In both cases, the source
of uncertainty leading to failures may be due to aleatoric or
epistemic uncertainty. Aleatoric uncertainty includes inher-
ent stochasticity in the sensing and actuation, and the partial
observability of the world. Epistemic uncertainty includes
limitations of the computational models, algorithmic lim-
itations and approximations, and (in the case of machine-
learned models) the limitations of the training data.

While there has been significant progress in uncertainty
quantification, most such approaches are either unable to
reason about epistemic uncertainty, or fail to accurately es-
timate epistemic uncertainty in out-of-distribution settings.
We seek to address this gap by introducing introspective per-
ception [22], a novel approach to uncertainty estimation that
enables robots to autonomously discover perceptual failures
during deployment, accounting for both aleatoric and epis-
temic uncertainty.

Introspective Perception
We formulate introspective perception as a higher-order
function that takes as input a perception function and learns
an introspection function that predicts what parts of the
sensed input to the perception function are likely to lead
to perceptual failures. Introspective perception exploits con-
sistency at several levels to identify failures — by leverag-

Figure 2: Introspective Vision for Simultaneous Localization and
Mapping (IV-SLAM) autonomously learns where to extract interest
points, which features to ignore, and context-aware noise models
for competence-aware SLAM.

ing multi-modal sensing consistency, spatio-temporal con-
sistency, and algorithmic consistency naturally present in
data collected by a mobile robot, it can learn an empiri-
cal model of the error distribution of perception algorithms
in the deployment environment, in an autonomously super-
vised manner.

With Introspective Vision for Obstacle Avoidance
(IVOA) [24], we leveraged occasionally available supervi-
sory sensing to autonomously detect failures in depth esti-
mation. Given a black-box stereo vision algorithm, IVOA is
able to predict which parts of sensed images are likely to re-
sult in failures of obstacle sensing, and the types of distinct
failure modes. We further investigated competence-aware
planning using the results of IVOA to identify locations
in the world where a robot is likely to experience percep-
tual failures. We introduced competence-aware path plan-
ning via introspective perception (CPIP) [21], a Bayesian
framework to iteratively learn and exploit task-level compe-
tence in novel deployment environments.

We further introduced Introspective Vision for Simulta-
neous Localization and Mapping (IV-SLAM) [23] to au-
tonomously learn context-aware noise models for features
extracted for visual SLAM. IV-SLAM leverages spatio-
temporal consistency of 3D landmarks in visual SLAM
to autonomously identify when regions in captured im-
ages were likely to lead to tracking failures. Using this au-
tonomously supervised data collection, IV-SLAM learns a
context-aware noise model to predict feature re-projection
errors (Figure 2). We empirically demonstrated on standard
datasets and real-world data with the UT Jackal, that IV-
SLAM 1) is accurately able to predict sources of tracking
error, 2) reduces tracking error compared to visual SLAM,
and 3) increases the mean distance between tracking fail-
ures by more than 70% compared to V-SLAM in challenging
real-world settings.

Open Research Questions
While we have made significant progress in introspective
perception, several open research questions remain. First,
how can we learn to reason about the impact of conditions
and context on the performance of perception algorithms?
For example, a wet marble sidewalk may be slippery and
hence dangerous to drive on, but when it is dry, it may be
safe — hence competence is dependent on both the context
(marble sidewalk) and the conditions (wet or dry). Second,



how can we learn to reason about the impact of perception
failures on high-level task execution? We believe addressing
these questions will help significantly improve the robust-
ness and reliability of robots in real-world settings.

Context-Aware Navigation
Context-aware navigation can be broken down into its per-
ception and planning components, where perception needs
to identify entities and factors that will affect navigation, and
planning needs to reason about how different actions will be
affected by these entities and factors. We specifically focus
on perceiving entities of relevance, terrain-aware navigation,
and social navigation.

Perceiving Entities of Relevance
A common approach to context-aware navigation is to pre-
specify a set of entities that are relevant for navigation,
and to use supervised learning to detect these entities, their
poses, and track them over time. This approach has most
notably been effective in the autonomous vehicles (AV) do-
main, where large-scale labeled training datasets such as the
KITTI [7], Waymo [29], and NuScenes [3] datasets have
enabled the development of highly accurate perception al-
gorithms for detecting entities of relevance to autonomous
driving. However, such datasets rely on higher fidelity sen-
sor suites, encounter different geometric and semantic enti-
ties, and have different sensor viewpoints compared to ur-
ban robots. This causes perception models trained on AV
datasets to perform poorly on robots in urban settings.

To address this gap, we contributed the UT Campus Ob-
ject Dataset (CODa) [34], a large-scale annotated multi-
modal dataset for training and benchmarking egocentric 3D
perception for robots in urban environments. Our dataset is
comprised of 23 sequences in indoor and outdoor settings on
a university campus and contains repeated traversals from
different viewpoints, weather conditions, and scene densi-
ties. CODa contains 1.3 million ground truth 3D bounding
box annotations, instance IDs, and occlusion values for ob-
jects in the 3D point cloud. Furthermore, it includes 5000
frames of 3D terrain segmentation annotations for 3D point
clouds. All annotations are provided by human annotators,
and labeled at 10Hz for 3D bounding boxes, and 2-10Hz
for terrain semantic segmentation. Compared to similar 3D
perception datasets, CODa has far more class diversity, con-
taining 53 object classes and 23 urban terrain types. This
includes classes that are useful to urban navigation, such as
doors, railings, stairs, emergency phones, and signs.

An open research question is how to go beyond super-
vised learning in perceiving entities of relevance — unfor-
tunately the state of the art in unsupervised perception sig-
nificantly lag behind supervised approaches. We hope that
CODa will be a valuable resource to boot-strap research in
unsupervised 3D perception for urban robots, and eventu-
ally enable robots to perceive entities of relevance in urban
environments without requiring expensive labeled data.

Terrain-Aware Navigation
Robots deployed in outdoor environments must reason
about different types of terrain for both safety (e.g., pre-

Figure 3: Leveraging learned visual representations for
preference-aware path planning.

fer dirt over mud) and deployer preferences (e.g., prefer
dirt path over flower beds). Most existing solutions to this
preference-aware path-planning problem use semantic seg-
mentation [14] to classify terrain types from camera images,
and then ascribe costs to each type [31]. Unfortunately, there
are three key limitations of such approaches – they 1) require
pre-enumeration of the discrete terrain types, 2) are unable
to handle hybrid terrain types (e.g., grassy dirt), and 3) re-
quire expensive labeled data to train semantic segmentation.

To overcome these limitations of discrete segmentation-
based approaches, we have been pursuing several variations
of representation learning to teach robots to distinguish be-
tween different terrain types without requiring explicit labels
(Figure 3). In general, these approaches first convert RGB
images to learned embeddings that encode terrain types,
and then use these embeddings to predict costs for differ-
ent terrain types. There are several variations of this ap-
proach, including learning embeddings via supervised con-
trastive learning [18], self-supervised representation learn-
ing [2], and autonomous domain adaptation [17].

Visual Representation Learning for Preference-Aware
Path Planning (VRL-PAP) [26] leverages unlabeled human
demonstrations of navigation to autonomously learn visual
embeddings of terrains that distinguish terrains treated by
the human demonstrator as having different preferences.
VRL-PAP relies on demonstrations that show the human
avoiding certain terrains and preferring others, and uses
these demonstrations to learn a mapping from images to rep-
resentations that distinguishes between the different terrains.
In some scenarios, it may be infeasible to provide demon-
strations where the human clearly avoids certain terrains
— for such scenarios, we introduce Self-supervised Terrain
Representation Learning (STERLING) [16], which employs
a novel multi-modal self-supervision objective through non-
contrastive representation learning to learn relevant terrain
representations for terrain-aware navigation. To adapt to
novel terrains, we introduce Preference Extrapolation for
Terrain-aware Robot Navigation (PATERN) [17], which ex-
trapolates operator preferences for visually novel terrains
by identifying similarity in the inertial-proprioceptive-tactile
space. The key insight of PATERN is that the operator’s pref-
erences for novel terrains can often be inferred by comparing
to other terrains that though visually different, have similar
inertial-proprioceptive-tactile responses when traversed.



Social Navigation
A key challenge with social navigation is that “socially ac-
ceptable” navigation behaviors are both ill-specified and
vary significantly between scenarios, individuals, and cul-
tures. A summary of the relevant challenges, scenarios, met-
rics, and benchmarks is included in our recent survey [6] on
social navigation. Given the lack of precise specifications
for socially acceptable navigation, one appealing approach
is to learn social costs and navigation policies directly from
human demonstrations. In support of this, we introduced So-
cially Compliant Navigation Dataset (SCAND) [15], a large-
scale dataset of manually driven robots in challenging social
settings to demonstrate how to navigate in a socially com-
pliant manner. SCAND contains 8.7 hours, 138 trajectories,
25 miles of socially compliant, human tele-operated driv-
ing demonstrations, with logs of 3D LIDAR, joystick com-
mands, odometry, visual, and inertial sensing collected on a
Boston Dynamics Spot and a Clearpath Jackal.

Using SCAND, we recently showed that, surprisingly,
even in socially challenging settings, pure geometric navi-
gation can be sufficient for more than 80% of the time, and
a hybrid approach that learns to switch between geomet-
ric and learning-based navigation on a context-specific basis
can thus be effective in practice [25].

Open Research Questions
While we have made significant progress in learning to per-
ceive entities of relevance, terrain-aware navigation, and so-
cial navigation, several open research questions still remain.
First, how can we learn to identify and reliably detect en-
tities of relevance in urban environments without requiring
expensive labeled data? Second, how can we learn to ac-
count for multiple factors simultaneously, including terrain
types, social norms, and other contextual factors, in a unified
framework? Third, how can we teach robots how to grace-
fully handle unexpected or unusual combinations of circum-
stances, such as emergency vehicles at a construction site,
or a parade on a rainy day? We expect that addressing these
questions will assist in making robots more robust and capa-
ble of navigating complex urban environments.

Performing End-User Tasks
While the prevalence of robots in the real world is increas-
ing, they are still programmed to perform a limited set of
pre-defined tasks. We contend that to truly be useful in the
real world, robots must be able to learn to perform tasks
not explicitly specified during development. Such end-user
tasks can be specified in natural language, demonstrated by
a human, or inferred from context. We survey several recent
approaches to learning to perform end-user tasks, including
learning from limited demonstrations and natural language.

Learning From Limited Demonstration
Learning from demonstration is a promising paradigm for
teaching robots to perform tasks that are not explicitly spec-
ified during development. The key challenge here is to learn
from a small number of demonstrations and to generalize the
learned task to novel situations. To address this challenge,

we introduce several approaches that rely on programmatic
imitation learning (PIL) to represent tasks as programs in a
domain-specific language (DSL). The DSL provides a struc-
tured representation of the task that can be used to generalize
to novel situations and further provides strong inductive bi-
ases that promote data-efficient learning.

Despite its merits, PIL has several limitations, includ-
ing the need for computationally expensive search in pro-
gram space, the inability to handle noisy demonstrations,
and the necessity of providing labeled demonstrations.
We introduce layered dimension-informed program syn-
thesis (LDIPS) [10] to address the first limitation, by us-
ing physics-informed dimension constraints to restrict the
search space of programs to physically meaningful expres-
sions. LDIPS prohibits synthesizing programs that violate
dimension constraints (e.g., comparing a speed to a dis-
tance), which simultaneously reduces the search space and
improves the generalizability of the learned programs. It-
erative dimension-informed program synthesis (IDIPS) [8]
further extends LDIPS by iteratively refining the programs
in a lifelong learning setting, where the robot continually
improves its performance from additional demonstrations
over time. We introduce SAT modulo theory (SMT) -based
robot transition repair (SRTR) [9] to correct learned pro-
grams during demonstrations by using an SMT solver to
modify program parameters such that the result of running
the program matches human-provided corrections. To learn
programs in environments with an open set of objects, we
introduce PROLEX [20] to learn programmatic structures
from demonstration traces, and to prune the search space
by reasoning about semantic relations between potential ob-
jects and actions. We have also recently demonstrated that
PIL can be formulated using probabilistic programming to
learn programs from noisy demonstrations and in the ab-
sence of action labels: PLUNDER [33] uses an expectation-
maximization framework to simultaneously infer action la-
bels from unlabeled motor demonstrations and synthesize a
program that is consistent with such labels.

Natural Language To Task Programs
Recent advancements in large language models (LLMs)
have spurred interest in using them for generating robot
programs from natural language, with promising initial re-
sults [5, 30, 13, 12, 1, 19, 27, 32, 4, 28]. We investigate the
use of LLMs to generate programs to perform long-horizon
tasks where accurate sequencing and ordering of actions is
crucial for success. We contribute CodeBotler and RoboE-
val [11] — CodeBotler is an open-source robot-agnostic
tool to program service mobile robots from natural lan-
guage, and RoboEval a benchmark for evaluating LLMs’ ca-
pabilities of generating programs to complete service robot
tasks. RoboEval evaluates the correctness of generated pro-
grams by checking execution traces starting with multiple
initial states, and checking whether the traces satisfy tem-
poral logic properties that encode correctness for each task.
Our findings from RoboEval show that even the largest of
LLMs struggle to generate programs that accurately perform
end-user tasks. We believe RoboEval will be a valuable re-
source for the community to benchmark progress in gener-



ating robot programs from natural language.

Open Research Questions
While we have made significant progress in learning to per-
form end-user tasks, several key challenges remain. First,
how can we learn to infer the implicit intent behind user
tasks, beyond the explicit demonstration or natural language
description? Second, there is a trade-off between expressive-
ness and robustness — approaches that are capable of learn-
ing a wider and richer variety of novel behaviors are often
less robust to domain shifts and noisy demonstrations. How
can we design algorithms that are both expressive and ro-
bust? Third, how can we provide feedback or some form of
probabilistic guarantees to users about the correctness of the
learned task? We believe that addressing these questions will
be essential for building and deploying general-purpose ser-
vice mobile robots.

Conclusion
In this paper, we have surveyed three key aspects of “getting
it right” for service mobile robots: competence-aware auton-
omy, context-aware navigation, and learning to perform end-
user tasks. We have presented several promising directions
to address these challenges, and open questions and avenues
for future work.
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