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Abstract

Hierarchical Task Network (HTN) planning usually requires
a domain engineer to provide manual input about how to de-
compose a planning problem. Even HTN-MAKER, a well-
known method-learning algorithm, requires a domain engi-
neer to annotate the tasks with information about what to
learn. We introduce CURRICULAMA, an HTN method
learning algorithm that completely automates the learning
process. It uses landmark analysis to compose annotated
tasks and leverages curriculum learning to order the learning
of methods from simpler to more complex. This eliminates
the need for manual input, resolving a core issue with HTN-
MAKER. We prove CURRICULAMA’s soundness, and show
experimentally that it has a substantially similar convergence
rate in learning a complete set of methods to HTN-MAKER.

1 Introduction
Automated planning systems require a domain expert to pro-
vide knowledge about the dynamics of the planning domain.
In Hierarchical Task Networks (HTNs), expert-provided
knowledge includes structural properties and potential hi-
erarchical problem-solving strategies in the form of HTN
decomposition methods. Writing these methods is a sig-
nificant knowledge engineering burden. Some techniques
(Hogg, Muñoz-Avila, and Kuter 2016; Hogg, Muñoz Avila,
and Kuter 2008) partially overcome this burden by learning
HTN methods after analyzing the semantics of a solution
plan for planning problems. But these techniques still re-
quire input from the human designer. We overcome the need
for human input by combining two insights to produce an
algorithm, CURRICULAMA, that leverages planning land-
marks and curriculum learning. Unlike other HTN learn-
ing algorithms, CURRICULAMA doesn’t require a human
to construct a curriculum because it constructs its own cur-
riculum by analyzing the landmarks in planning problems.

Curriculum learning (Bengio et al. 2009) is a training
strategy that improves learning performance by presenting
training examples in increasing order of difficulty. We apply
curriculum learning to the problem of learning HTN meth-
ods by emphasizing learning simpler methods before learn-
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ing gradually more complex methods that incorporate previ-
ously learned methods.

Landmarks (Hoffmann, Porteous, and Sebastia 2004) are
facts that must appear in every solution to a planning prob-
lem. In the context of learning hierarchical knowledge,
methods that achieve landmarks provide a backbone for
solving a planning problem. More critically, landmarks also
provide a natural way to structure methods automatically.

We develop an approach that builds curricula to learn
methods that achieve landmarks. This paper makes the fol-
lowing contributions:

• We introduce CURRICULAMA, which uses landmarks to
generate curricula for constructing HTN methods. This
approach obviates HTN-MAKER’s need for manual an-
notation of tasks.

• We prove that the methods learned by CURRICULAMA
can be used by a hierarchical planner to solve an HTN
planning problem that is equivalent to the classical plan-
ning problem from which the methods were learned.

• Our experimental results show that CURRICULAMA has
a similar convergence rate to HTN-MAKER in learning a
complete set of methods to solve all the test problems.

2 Background

HTN-MAKER. Our work builds on the HTN method
learning mechanism of the HTN-MAKER algorithm, which
learns hierarchical planning knowledge in the form of de-
composition methods for HTNs. HTN-MAKER takes as in-
put the initial states from a set of classical planning prob-
lems in a planning domain and solutions to those problems,
as well as a set of semantically-annotated tasks to be ac-
complished. The algorithm analyzes this semantic informa-
tion in order to determine which portions of the input plans
accomplish a particular annotated task and constructs HTN
methods based on those analyses. Formally, each annotated
task has a head, preconditions, and goals. For example, here
is the Make-Clear annotated task for the Blocks World do-
main:
1 (:task
2 :head Make-Clear(?a - block)
3 :preconditions ()
4 :goals ((clear ?a)))



What we call goals HTN-MAKER calls effects. It does not
cause the goals to be true; instead, the goals specify what is
needed to be true after performing the annotated task.

Landmarks. Landmarks are a natural way to subdivide a
planning solution. A landmark (Hoffmann, Porteous, and
Sebastia 2004) for a planning problem is a fact that is true
at some point in every plan that solves the problem. A land-
mark graph is a directed graph where the nodes are land-
marks and the edges are orderings. There are four types
of orderings among landmarks: natural, necessary, greedy-
necessary, and reasonable (see Appendix for formal defini-
tions 1).

3 Learning HTN methods with Curricula
Generated from Landmarks

Suppose we want to teach an HTN learner to learn meth-
ods for solving some task τ . An ideal curriculum would fo-
cus the learner on the simplest subtasks of τ first, then build
more and more complex subtasks until all of τ is learned.
Learning HTN methods from plan traces is a common ap-
proach, and it follows that traces for subtasks of τ will also
be subtraces of a plan trace for τ . Specifically, if π is a plan
trace for solving τ , then the plan trace for solving each sub-
task τ is a subtrace π[b, e] of π, where [b, e] indicates the
beginning and ending indices of the subtrace. Thus we can
represent a k-step curriculum that learns subtraces as a se-
quence of triples of the form (bi, ei, τi) where i ∈ Nk.

Definition 1. A classical planning problem P is a triple
(Σ, s0, g), where Σ is the classical planning domain descrip-
tion, s0 is the initial state and g is the goal (Ghallab, Nau,
and Traverso 2016).

Definition 2. Given a plan trace π, a curriculum C is a se-
quence of k curriculum steps of the form (bi, ei, τi), where
bi and ei specify the starting and ending indices of the sub-
trace to analyze, and τi specifies the annotated task to learn
from the subtrace for step i ∈ Nk.

For example, consider a Blocks World classical planning
problem with 4 blocks A, B C and D stacked on each other
(see Figure 1) and the goal is to have block A’s top clear.
Formally: initial state s0={(on-table A), (on B A), (on C B),
(on D C), (clear D), (hand-empty)}; and goal g={(clear A)}.
A possible solution πclearA is to remove the blocks above
A one by one through 5 actions, which are prefixed with the
character ‘!’ to distinguish them from predicates. Here is a
3-step curriculum for learning methods of πclearA:

Step Begin End Annotated Task
a 1 1 Make-Clear
b 1 3 Make-Clear
c 1 5 Make-Clear

We want step a to learn a method m1 for annotated tasks
Make-Clear from the first action in plan P , this method
tries to clear a block under one block. Then we want step
b to learn a method m2 for annotated tasks Make-Clear

1A version of this paper with an appendix is available on ArXiv:
https://arxiv.org/pdf/2404.06325.pdf
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D
Action 1: (!Unstack D C)
Action 2: (!Putdown D)
Action 3: (!Unstack C B)
Action 4: (!Putdown C)
Action 5: (!Unstack B A)

Figure 1: A Blocks World problem in which the initial state
is a stack of 4 blocks. The goal is to make the bottom block
A clear. The plan to achieve the goal is shown on the right.

Algorithm 1 CURRICUGEN: Curriculum Generation from
Landmarks
Input: a classical planning problem P , a possibly empty set
of HTN methods M
Output: an updated set of HTN methods M

1: (Σ, s0, g)← P
2: (V,EV )← extract landmark graph from (Σ, s0, g)
3: add reasonable orders to (V,EV )
4: C ← ⟨⟩ {initialize the curriculum steps}
5: π ← ⟨⟩ {initialize the plan trace}
6: s← s0 {initialize the current state}
7: i← 0 {initialize the plan length}
8: while V ̸= ∅ do
9: select and remove a vertex v in (V,EV ) that has no

predecessors
10: π′ ← CLASSICALPLANNER(Σ, s, v)
11: s← γ(s, π)
12: i← i+ length(π′)
13: concatenate π′ to π
14: t← MAKEANNOTATEDTASK(v)
15: for k from i to 1 do
16: append (k, i, t) to C
17: M = CURRICULEARN(Σ, s0, π, C,M)
18: return M

from the first to the third action in plan P , this method tries
to clear a block under two blocks, and would presumably
contain a subtask Make-Clear that is related to m1 previ-
ously learned from the first action. Then step c learns a new
method m3 for Make-Clear that subsumes m2.

CURRICULAMA, has two subroutines: CURRICUGEN
generates curricula from landmarks while CURRICULEARN
learns HTN methods from the curricula.

3.1 CURRICUGEN

Since a landmark must be true at some point in every solu-
tion to a planning problem, we hypothesized that it would
be useful to learn methods that reach landmarks. Our al-
gorithm, CURRICUGEN (Algorithm 1) extracts landmarks
from a planning problem, then generates a curriculum from
those landmarks.

CURRICUGEN takes as input a classical planning prob-
lem. It first generates a landmark graph for P using hm

Landmarks (Line 2) from the landmark generation method
introduced by Keyder, Richter, and Helmert (2010); then it



Figure 2: A landmark graph for clearing block A from
blocks B, C and D above in the Blocks World domain. The
circled nodes are landmarks, where the dashed nodes are the
landmarks that are satisfied in the initial state, and the filled
node is the goal. The edges are orderings among the land-
marks, where ‘gn’ stands for greedy necessary ordering, and
‘n’ stands for natural ordering.

Figure 3: The subplans generated from the landmarks.

adds reasonable orders to the landmark graph (Line 3) from
the method described by Hoffmann, Porteous, and Sebas-
tia (2004);2 and then it iterates through the landmarks by
their orderings. For each landmark, CURRICUGEN itera-
tively obtains a solution trace from the current state using a
classical planner and updates the current state by applying
the solution plan (Lines 10 and 11). MAKEANNOTATED-
TASK (Line 14) takes as input the current landmark and pro-
duces an annotated task that has a task name, empty precon-
ditions, and the landmark as its goals. Given the annotated
task produced from the landmark, CURRICUGEN generates
curriculum steps (Lines 15 and 16) that progressively trace
backward to the beginning of the plan to learn methods.

Example. In the Blocks World problem in Figure 1, the ini-
tial state has 4 stacked blocks A, B, C, and D, and the goal is
to clear block A. Excluding the initial state, Figure 2 shows
the landmark graph from CURRICUGEN for (s0, g), which
consists of 3 landmarks: (clear C) ≺ (clear B) ≺ (clear A).

CURRICUGEN generates subplans to achieve the first,

2We use the implementation of hm landmark generation and
reasonable order extraction in the Fast Downward planning sys-
tem (https://www.fast-downward.org/), configured to only allow
for single-atom (conjunctive) landmarks.

second and the third landmarks (Figure 3). For each
landmark, it creates an annotated task (in this case,
Make-Clear) and curriculum steps in which the final in-
dices correspond to the action that achieves the landmark,
and the beginning indices go back to the plan trace’s start:

Step Begin End Annotated Task
a 1 1 Make-Clear
b 3 3 Make-Clear
c 2 3 Make-Clear
d 1 3 Make-Clear
e 5 5 Make-Clear
f 4 5 Make-Clear
g 3 5 Make-Clear
h 2 5 Make-Clear
i 1 5 Make-Clear

The curriculum comprises nine steps, labeled from a to i.
Each step is defined by a specific segment of π, delineated
by its beginning and ending indices, along with the name of
an annotated task. The curriculum is structured to initiate
simpler tasks, gradually progressing to more complex ones.
The regressive sequencing of the beginning indices aims at
learning methods with varying preconditions for the same
annotated tasks.

3.2 CURRICULEARN

CURRICULAMA’s CURRICULEARN subroutine learns
HTN methods from curricula, shown in Algorithm 2. The
input to CURRICULEARN includes a domain description Σ,
an initial states s0, an execution trace π (which can be a plan
produced by a planner given a goal), a curriculum C, and a
possibly empty set of HTN methods M . For each curricu-
lum step in C, it uses the algorithm LEARN-METHOD3 to
perform the analysis on the subtrace π[b, e] and learns some
new methods for τ . It also keeps a set of indexed method in-
stances X to identify and reuse previously learned methods
as subroutines in a new method that is being synthesized.
Specifically, each method is indexed by the beginning index
of the corresponding subtrace b, and the ending index of the
corresponding subtrace e.

Algorithm 2 A high-level description of CURRICULEARN.
Input: classical domain description Σ, initial state s0, solu-
tion trace π, curriculum C, and a possibly empty set of HTN
methods M
Output: an updated set of HTN methods

1: initialize X ← ∅
2: let S⃗ be the state trajectory generated from γ(s0, π)
3: for (b, e, τ) ∈ C do
4: M ′ ← LEARN-METHOD(π, S⃗, τ,X, b, e)
5: M ←M ∪M ′

6: for m ∈M ′ do
7: X ← X ∪ {(m, b, e)}
8: return M

3LEARN-METHOD performs hierarchical goal regression over
a plan trace. It is the same procedure that HTN-MAKER uses as a
subroutine (Hogg, Muñoz-Avila, and Kuter 2016, Algorithm 3) to
learn preconditions and subtasks of HTN methods.



CURRICULAMA takes as input a planning problem and
outputs a set of learned HTN methods. It does this by using
CURRICUGEN to generate curricula from landmarks, and
CURRICULEARN to acquire HTN methods from these cur-
ricula. This obviates HTN-MAKER’s need for manual an-
notation of tasks and corresponding plan subtraces.

4 Theoretical Analysis
We prove that the methods learned by CURRICULAMA
from a classical planning problem can be applied to solve
the equivalent hierarchical problem. First, we need to go
through the process of CURRICUGEN given a classical plan-
ning problem and define the hierarchical planning problem.

Given a classical planning problem P = (Σ, s0, g) as a
training example, CURRICUGEN produces a solution trace
π and a curriculum C. Given π, C, and a possibly empty
set of HTN methods M , CURRICULEARN will add newly
learned methods to M . Let τ be an annotated task that has
g as its goals. Then Ph = ((Σ,M), s0, ⟨τ⟩) is the hierar-
chical planning problem (see Definition 3) equivalent to the
classical planning problem P .

Definition 3. A hierarchical planning problem Ph is a triple
(Σh, s0, ⟨τ⟩) where Σh is the hierarchical planning domain
description, s0 is the initial state and ⟨τ⟩ is the task list.
A hierarchical planning domain description Σh is a tuple
(Σ,M), where Σ is the classical planning domain descrip-
tion and M is the set of HTN methods.

Now we can show how the methods learned by CURRICU-
LAMA can be used to solve the hierarchical problem, which
is equivalent to the classical problem from which the meth-
ods were learned.

Proposition 1. Given P = (Σ, s0, g), π, τ , M, and Ph =
((Σ,M), s0, ⟨τ⟩), π is a solution to Ph as a result of hierar-
chically decomposing g using the methods in M .

Proof Sketch If π is empty or g is satisfied in s0, then
CURRICULEARN will learn a trivial method for τ that has
empty subtasks, which is sufficient to solve the problem.
Otherwise, since g has to be the final landmark in the
landmark graph of P , the final curriculum step in C is
(1, len(π), τ). Therefore, CURRICULEARN will learn at
least one method from curriculum step (1, len(π), τ). This
method must be applicable to s0 in Ph because its precon-
ditions were computed by regressing g through the actions
of π (Hogg, Muñoz-Avila, and Kuter 2016, the LEARN-
METHOD precedure), which is applicable to s0. Further-
more, the goal regression procedure guarantees that when-
ever the preconditions of a method are satisfied there must
be some way to reduce the subtasks of that method using
other methods learned from π, because the subtasks of that
method were chosen from the indexed instances of other
methods. Eventually, g in Ph will be hierarchically decom-
posed into the action sequence π. □

Therefore, CURRICULAMA is sound for the original
problem for which it learned methods. That is, methods
learned by CURRICULAMA from a classical planning prob-
lem P will solve the equivalent hierarchical problem Ph.

However, we also want to know how rapidly it can learn a
complete set of methods from the training problems. In the
next section, we will empirically evaluate CURRICULAMA
to show that it has a comparable convergence rate in learning
a complete set of methods to HTN-MAKER.

5 Empirical Study
We have evaluated CURRICULAMA (and compared it to
HTN-MAKER) experimentally in five IPC (International
Planning Competition) domains: Logistics, Blocks World,
Rover, Satellite, and Zeno Travel. These domains are used
for evaluation in the original papers on HTN-Maker. Due
to space limitations, we present results for the Blocks World
and Logistics; results are similar across domains and can be
seen in the Appendix. We assess the efficiency of CURRICU-
LAMA in learning Hierarchical Task Network methods and
the effectiveness in solving hierarchical planning problems
using the learned methods.

Our evaluation considered how well the methods learned
from an incremental set of training problems can solve a set
of static testing problems. A single trial for a domain used
PDDL-Generators (Seipp, Torralba, and Hoffmann 2022) to
generate 150 random training problems and 50 testing prob-
lems from the same distribution of parameters. Starting with
an empty set of methods M , the procedure iterated through
the training problems (1, 2, .., 150), augmented M using ei-
ther CURRICULAMA or HTN-MAKER, and used HTN-
MAKER’s version of the SHOP planner (Nau et al. 1999) to
solve the 50 test problems with the current set M . We re-
peated five trials in each of the five domains and reported
on the following metrics: (1) convergence, (2) average plan
length, (3) average planning time, (4) method generation, (5)
running time in learning. All experiments are run on AMD
EPYC 7763 (2.45 GHz).

Figure 4 shows that CURRICULAMA’s method learn-
ing exhibits a similar convergence rate and results in plan
lengths and planning time comparable to HTN-MAKER, all
while achieving a significant advantage: it completely elim-
inates the need for expert-provided annotated tasks.

CURRICULAMA’s planning mechanism may cause it to
learn extraneous methods in some domains (e.g., the Lo-
gistics, Satellite and Rover domain). While it’s possible
that this may be an indication of overfitting, we believe
this is more likely a result of partial orders in the land-
mark graph. The landmark generation algorithms used by
CURRICULAMA (Algorithm 1, lines 2 and 3) return only a
partial ordering among landmarks given the additional rea-
sonable orders. All reasonable orderings are not determined
because determining whether a reasonable order exists be-
tween two given landmarks is a PSPACE-complete problem
(Hoffmann, Porteous, and Sebastia 2004). Then, CURRICU-
LAMA enforces a total ordering to formulate a sequence of
subgoals, which is not necessarily the optimal strategy (see
Appendix for an example). This often results in CURRIC-
ULAMA’s derivation of additional methods from extended
plan traces, as those methods cover more potential (and sub-
optimal) paths to the goal. Improving CURRICULAMA’s
strategy for ordering landmarks by incorporating more so-



(1) Blocks World domain

(2) Logistics domain

Figure 4: Experimental results in (1) the Blocks World domain and (2) the Logistics domain. From left to right, the subfig-
ure’s y-axis shows (a) the fraction of problems that the planner could successfully solve using the methods that each learning
algorithm learned; (b) the average length of the plans that the planner produced using the learned methods; (c) the average
planning time over the 50 test problems; and (d) the total number of methods learned. In each of the subfigures, the x-axis
shows the number of training problems (0-150) from which the methods were learned. The blue line displays the results for
CURRICULAMA and the orange dashed line displays the results for HTN-MAKER. The shaded areas indicate the variance in
the number of methods learned across five trials.

phisticated heuristics could help reduce the creation of these
redundant methods and is a topic for future work.

While CURRICULAMA may learn slightly more methods
in some domains due to suboptimal landmark orderings, this
does not appear to have a detrimental impact on planning
success rates or plan lengths. Notably, in domains where
CURRICULAMA successfully captures all required land-
mark orderings, it learns fewer methods than HTN-MAKER,
which results in relatively shorter planning time.

It’s also worth highlighting that CURRICULAMA’s addi-
tional computational time (Figure 5), averaging between 0.2
to 0.8 seconds per problem, is negligible when compared to
the overall planning time or the time required from a domain
expert. Thus, CURRICULAMA is an efficient and promis-
ing alternative to acquiring planning methods.

5.1 Future Work
The number of methods and planning time keep increas-
ing without convergence for both algorithms in the Blocks
World, Logistics and Rover domain. We believe that given
enough training problems, they will eventually converge. To
verify that, we will expand the training set in our future ex-
periments.

We are also interested in an empirical study that compares

manually annotated task and automatically annotated tasks
when directly applied to HTN-MAKER without any curric-
ula. This will give an idea of the quality of the tasks gener-
ated by CURRICUGEN.

Last but not least, we will theoretically and empirically
analyse CURRICULAMA’s time complexity as some mea-
sure of task domain problem or solution complexity in-
creases.

6 Related work
Several researchers have investigated ways to learn struc-
tural knowledge, including HTNs, though they did not use
curricula generated from landmarks to guide learning.

The algorithm by Lotinac and Jonsson (2016) uses in-
variant analysis to construct an HTN from the PDDL de-
scription of a planning domain and a single representa-
tive instance. Learn-HTN (Zhuo et al. 2009) learns HTN-
method preconditions and action preconditions and effects
under partial observability. It receives task decomposition
trees whose leaves are all primitive actions. It solves con-
straints using MAX-SAT among subtask-pairs in a task de-
composition tree to learn action models and method precon-
ditions. Similar to Learn-HTN, HTNLearn (Zhuo, Munoz-
Avila, and Yang 2014) learns HTN methods and action mod-



Figure 5: Running time needed to learn methods. The bars
represent the average time that each learning algorithm spent
on different parts of the learning process. Green represents
the time to obtain landmarks (Alg 1, Line 2 and 3), blue
indicates the time to obtain the plan (Alg 1, Line 8 to 16) ,
and orange shows the time to learn methods.

els from partially observed plan traces annotated with poten-
tially empty partial decomposition trees that capture task-
subtask decompositions.

The HTN Learning System (Yang, Pan, and Pan 2007)
uses partitioning to learn HTN methods. Other algorithms
learn method preconditions using the hierarchical relation-
ships between tasks, the action models, a complete descrip-
tion of the intermediate states using case-based reasoning
(Xu and Muñoz-Avila 2005) and version-space learning (Il-
ghami et al. 2005). The algorithm by Li, Kambhampati, and
Yoon (2009) uses techniques similar to probabilistic context-
free grammar learning and learns probabilistic HTNs. It can
learn recursive methods on repeated structures.

Word2HTN (Gopalakrishnan, Munoz-Avila, and Kuter
2016) combines semantic text analysis techniques and sub-
goal learning to create HTNs. Plan traces are viewed as
sentences where a plan trace consists of actions with their
grounded preconditions and effects. Each word in the sen-
tence is an atom or an action in the plan trace. This work
uses Word2Vec to convert each word into a vector repre-
sentation and applies agglomerative hierarchical partition-
ing on the learned vectors to learn methods with binary-
subtask decompositions. As an extension to their approach,
(Fine-Morris et al. 2020) approximates landmarks using so-
lution traces and learns methods with symbolic and numeric
preconditions that initially decompose problems using two
or more landmarks, and then finish the decomposing using
(primitive task, complex task) right-recursion.

CC-HTN (Hayes and Scassellati 2016) and Circuit-HTN
(Chen et al. 2021) translate execution traces into multi-trace
graphical representations where primitive tasks comprise
vertices and edges indicate sequential tasks. They apply
bottom-up consolidation techniques to group simple tasks
into progressively larger ones. Circuit-HTN treats the graph
as a circuit of resistors, using techniques from the reduction
of parallel and in-series resistors to discover new decompo-
sitions. CC-HTN similarly uses clique- and chain-detection
for structure-learning and also learns the method parameters.

Hérail and Bit-Monnot (2023) iteratively learns HTNs

using bottom-up pattern-recognition and compression tech-
niques on common sequences of subtasks in traces, which
get replaced with a task symbol. Segura-Muros, Pérez, and
Fernández-Olivares (2017) learn HTNs using process and
data mining by converting execution traces into event-logs
and extracting the preconditions and effects for each task
using a fuzzy rule-based learning algorithm.

HPNL (Langley 2022) is a system that learns new meth-
ods for Hierarchical Problem Networks (Shrobe 2021) by
analyzing sample hierarchical plans, using violated con-
straints to identify state conditions, and ordering conflicts
to determine goal conditions.

The hierarchical plan recognition algorithm by
Geib (2009) uses Combinatory Categorial Grammars
(CCGs) as part of the ELEXIR framework. It requires a
hand-authored CCG representing structure of plans done by
agents. LexLearn (Geib and Kantharaju 2018) learns CCGs
by enumerating CCG categories for a set of plan traces
from templates. LexGreedy (Kantharaju 2021) employs a
greedy approach to improve the scalability of CCG learning.
LexTGreedy (Kantharaju 2021) learns CCGs in domains with
type trees as an extension to LexGreedy .

Teleoreactive Logic Programs (TLPs) are a framework for
encoding knowledge using ideas from logic programming,
reactive control, and HTNs. This work includes ways to
learn recursive TLPs from problem solution traces (Choi
and Langley 2005), a learning method that acquires recur-
sive forms of TLP structures from traces of successful prob-
lem solving (Langley et al. 2006), and an incremental learn-
ing algorithm for TLPs based on explanation-based learning
(Nejati, Langley, and Konik 2006).

7 Conclusion
CURRICULAMA generates curricula from landmarks and
uses them to acquire HTN methods according to these cur-
ricula. We have proved that the methods that CURRICU-
LAMA learns from classical planning problems enable an
HTN planner to solve equivalent HTN planning problems.
In our experiments CURRICULAMA learned comparably
good methods to those learned by HTN-MAKER for the
same problems, with no requirement for a human to provide
methods, curricula, or annotations of tasks. The idea that
landmarks are useful for structural knowledge learning, and
that curricula can be constructed from those landmarks, may
apply to other structural knowledge learning techniques.
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