
Constraint Composite Graph-Based Weighted CSP Solvers: An Empirical Study

Orazio Rillo and T. K. Satish Kumar1,2,3,4,5
1Department of Computer Science

2Department of Physics and Astronomy
3Department of Industrial and Systems Engineering

4Information Sciences Institute
5University of Southern California

oraziorillo@gmail.com, tkskwork@gmail.com

Abstract

The Weighted Constraint Satisfaction Problem (WCSP)
is a very expressive framework for optimization prob-
lems. The Constraint Composite Graph (CCG) is a
graphical representation of a given (Boolean) WCSP
that facilitates its reduction to a Minimum Weighted
Vertex Cover (MWVC) problem by introducing intel-
ligently chosen auxiliary variables. It also enables ker-
nelization: a maxflow procedure used to fix the opti-
mal values of a subset of the variables before initiat-
ing search. In this paper, we present some CCG-based
WCSP solvers and compare their performance against
toulbar2, a state-of-the-art WCSP solver, on a variety of
benchmark instances. We also study the effectiveness of
kernelization.

Introduction
A Weighted Constraint Satisfaction Problem (WCSP) is de-
fined as a triplet ⟨X ,D, C⟩, where X = {X1, X2 . . . XN}
is a set of variables, D = {D1, D2 . . . DN} is the set
of their respective discrete-valued domains, and C =
{C1, C2 . . . CM} is a set of weighted constraints on subsets
of the variables. Each constraint Cj is defined on a certain
subset Sj ⊆ X , where |Sj | is referred to as the arity of
Cj . Cj specifies a non-negative weight for every possible
combination of values of the variables in Sj . An optimal as-
signment, also called an optimal solution, is an assignment
of values to all the variables from their respective domains
such that the total weight, i.e., the sum of the weights locally
induced by each weighted constraint, is minimized.

Boolean WCSPs are WCSPs in which all the variables
are Boolean, i.e., |Di| = 2 for all i ∈ {1, 2 . . . N}. A bi-
nary weighted constraint is a weighted constraint that in-
volves only two variables. Boolean WCSPs have the same
representational power as general WCSPs when non-binary
weighted constraints are allowed (Xu et al. 2020).

While WCSPs and Boolean WCSPs are NP-hard to solve
optimally, WCSP solvers can benefit from recognizing and
exploiting “structure” at an instance level. WCSP instances
can exhibit two kinds of structure: the graphical structure
and the numerical structure. The former represents which

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

variables interact with each other; the latter represents how
they interact with each other. The Constraint Composite
Graph (CCG), first introduced in (Kumar 2008), enables the
exploitation of both kinds of structure simultaneously. The
CCG is an automatically constructed graphical representa-
tion of a Boolean WCSP with vertices corresponding to each
of the original variables and some intelligently chosen auxil-
iary variables. Solving the Minimum Weighted Vertex Cover
(MWVC) problem on the CCG of a Boolean WCSP is equiv-
alent to solving the original WCSP (Kumar 2008).

Although the CCG introduces auxiliary variables, it en-
ables the Nemhauser-Trotter (NT) reduction, a maxflow-
based kernelization procedure that reduces the number of
variables in the substrate MWVC problem (Kumar 2016).
The CCG also enables a new generation of WCSP solvers
that can take advantage of the developments in MWVC
solvers. In this paper, we present two such CCG-based
solvers. The first utilizes Gurobi (Gurobi 2022), a state-of-
the-art Integer Linear Programming (ILP) solver, to solve
the substrate MWVC problem. The second utilizes Fast-
WVC (Cai et al. 2019), a state-of-the-art MWVC solver
based on local search. Both these solvers can invoke the ker-
nelization procedure in a preprocessing phase.

CCG-based WCSP solvers have the potential to simulta-
neously exploit both the graphical and the numerical struc-
tures of a WCSP instance. Some evidence of this is pre-
sented in (Xu, Koenig, and Kumar 2017), which shows that
the CCG-based ILP encoding of Boolean WCSPs is more
congenial to ILP solvers (such as Gurobi) compared to their
direct ILP encoding. However, a more thorough investiga-
tion of the advantages of CCG-based WCSP solvers over
other state-of-the-art WCSP solvers is required. In particu-
lar, toulbar2, an open-source WCSP solver, is the culmina-
tion of many other algorithmic techniques and, therefore, a
good competitor. In fact, toulbar2 is the winner of several
medals in recent competitions such as UAI 2022, XCSP3
2022, UAI 2014, UAI 2010, CPAI08, and UAI 2008.

In this paper, we present experimental results, rendered as
graphical plots, comparing our CCG-based solvers against
toulbar2. The plots portray the performance of the solvers
in finding optimal and bounded suboptimal solutions for the
given problem instances. We present an analysis of the re-
sults and a discussion about the strengths and weaknesses of
the various solvers.

X2

X4 0 1

0 10 11
1 8 7

Figure 1: An example of the projection of an MWVC prob-
lem onto an independent set. The left panel shows a vertex-
weighted undirected graph. The right panel shows the table
that represents the projection of the MWVC problem onto
the independent set {X2, X4}.

Background on Graph Theory
In this section, we review some preparatory background ma-
terial from graph theory.

We denote an undirected graph by G = ⟨V,E⟩, where
V is the set of its vertices and E is the set of its edges.
A vertex-weighted undirected graph is an undirected graph
with a non-negative real weight associated with each vertex.
We denote such a graph by G = ⟨V,E,w⟩, where V and E
follow the definition above, and w is a function that maps
each vertex v to its weight wv = w(v). The weight of a set
of vertices S ⊆ V is defined as the sum of the weights of the
individual vertices in S.

A set of vertices U ⊆ V constitutes an independent set
of an undirected graph G if and only if no two vertices in
U are connected by an edge. A vertex cover is a subset of
vertices S ⊆ V such that every edge in E has at least one
of its end points in S. A Minimum Vertex Cover (MVC) is
a vertex cover of minimum cardinality. The MWVC is de-
fined to be a vertex cover of minimum total weight on a
vertex-weighted undirected graph. The problem of finding
an MVC or an MWVC, referred to as the MVC problem or
the MWVC problem, respectively, is generally NP-hard (Pa-
padimitriou 1994). However, both problems can be solved in
polynomial time on bipartite graphs. A bipartite graph is a
graph whose vertices can be divided into two disjoint inde-
pendent sets, referred to as its partitions.

The Constraint Composite Graph
In this section, we show how to construct the CCG corre-
sponding to a given Boolean WCSP instance. This construc-
tion is presented formally in (Kumar 2008). First, we de-
fine the concept of projecting MWVC problems onto inde-
pendent sets of a graph. Later, we use this idea to construct
the “lifted” graphical representations of individual weighted
constraints. Finally, we show how to build the lifted graphi-
cal representation of an entire WCSP, i.e., its CCG.

Projections of MWVC Problems onto Independent
Sets
Given a vertex-weighted undirected graph G = ⟨V,E,w⟩,
let U = {u1, u2 . . . uk} ⊆ V be an independent set of G.

Let a k-bit vector t be such that ti = 0 imposes that ui is
necessarily excluded from the MWVC, and ti = 1 imposes
that ui is necessarily included in the MWVC. The projection
of the MWVC problem onto the independent set U is a table
with 2k entries, each corresponding to one of the possible
2k k-bit vectors t(1), t(2) . . . t(2

k). The entry corresponding
to t(j) is set to be the weight of the MWVC conditioned on
the restrictions imposed by t(j).

Figure 1 illustrates this concept on an example of a graph.
Here, we project the MWVC problem onto the independent
set {X2, X4}; this yields a table of four entries, also shown
in the figure. The value of each entry is computed accord-
ing to the restrictions imposed by its indices. For instance,
the indices (X2 = 1, X4 = 0) impose the inclusion of X2

in the MWVC and the exclusion of X4 from the MWVC.
With these restrictions, the MWVC is {X2, X3, X5}. Its to-
tal weight is 8, which determines the value of the entry.

Weighted Constraints as Projections of MWVC
Problems
The projection of an MWVC problem onto an independent
set U ⊆ V of a given graph G = ⟨V,E,w⟩ produces a
table of size 2|U |. This can be seen as a weighted constraint
over |U | Boolean variables. Conversely, we might view a
weighted constraint as the projection of an MWVC problem
onto an independent set.

The procedure for constructing the lifted graphical repre-
sentation of any weighted constraint over Boolean variables
goes through the unique multivariate polynomial represen-
tation of a weighted constraint. It is an efficient procedure
that outputs a graph containing vertices that represent the
original variables as well as intelligently chosen auxiliary
variables. The size of the graph is no more than the size of
the tabular representation of the weighted constraint. This
procedure uses the following two steps (Kumar 2008).

First, we convert each weighted constraint into a mul-
tivariate polynomial. This is done using a standard Gaus-
sian elimination procedure for solving systems of linear
equations. For each possible combination of values as-
signed to the participating variables, a linear equation is
enforced between the weight of this combination of val-
ues and the evaluation of the multivariate polynomial at the
same combination of values. This system has as many lin-
ear equations as the number of entries in the tabular rep-
resentation of the weighted constraint. Furthermore, it has
the same number of unknowns, i.e., the to-be-determined
coefficients of the multivariate polynomial. For example,
when applied to the generic ternary weighted constraint with
scope {Xi, Xj , Xk}, we obtain a multivariate polynomial
P (Xi, Xj , Xk) of degree 3, as shown in Figure 2. Since the
variables are Boolean, the multivariate polynomial has a to-
tal of eight coefficients to be determined: a000, a001 . . . a111.
We determine them by solving a system of eight linear
equations, one for each combination of values of the vari-
ables in the scope. For each combination, the evaluation of
P (Xi, Xj , Xk) is equated to the weight of the correspond-
ing combination in the weighted constraint. The system of
linear equations has a unique solution that can be computed

Xi

XjXk 00 01 10 11

0 c000 c001 c010 c011
1 c100 c101 c110 c111

P (Xi, Xj , Xk) = a000 + a100Xi + a010Xj + a001Xk + a110XiXj + a101XiXk + a011XjXk + a111XiXjXk

P (0, 0, 0) = c000 P (0, 0, 1) = c001 P (0, 1, 0) = c010 P (0, 1, 1) = c011

P (1, 0, 0) = c100 P (1, 0, 1) = c101 P (1, 1, 0) = c110 P (1, 1, 1) = c111

Figure 2: The multivariate polynomial representation of a generic ternary weighted constraint on the Boolean variables
{Xi, Xj , Xk}. The top panel shows the tabular representation of the weighted constraint. The bottom panel shows the mul-
tivariate polynomial with the to-be-determined coefficients and the system of linear equations that yields them.

(a) w ·Xi (b) −w · (Xi ·Xj ·Xk) (c) w · (Xi ·Xj ·Xk)

Figure 3: The three kinds of multivariate monomials and their lifted graphical representations. Panel (a) shows the lifted graph-
ical representation of a linear term w · Xi. Here, w1 and w2 are non-negative, while w = w1 − w2 can be either positive or
negative. Panel (b) shows the lifted graphical representation of a negative nonlinear term −w ·(Xi ·Xj ·Xk). Here, w is positive.
Panel (c) shows the lifted graphical representation of a positive nonlinear term w · (Xi ·Xj ·Xk). Here, w is positive. Only in
this case, we use a second auxiliary variable A′, shown in yellow, with a large weight L.

using the Gaussian elimination procedure.
Second, we represent each term of the multivariate poly-

nomial graphically. There are only three kinds of terms, dis-
cussed below, each of which can be represented using a
“gadget”, i.e., a template graphical representation of a mul-
tivariate monomial.

• A linear term w ·Xi can be represented by a graph with
two connected vertices, one being the variable Xi, with
weight w1, and the other being an auxiliary variable A,
with weight w2. As shown in Figure 3a, w1 and w2 are set
such that w1 − w2 = w.

• A negative nonlinear term, such as −w · (Xi ·Xj ·Xk),
can be represented by a “flower” structure that contains
one vertex for each variable in the term and an auxiliary
variable A that is connected to all the others. As shown in
Figure 3b, the auxiliary variable A has a weight w, while
all the other vertices have unit weights.

• A positive nonlinear term, such as w · (Xi ·Xj ·Xk), can
be represented by a “flower” structure that contains one
vertex for each variable in the term, an auxiliary variable
A, and a second auxiliary variable A′, called the “thorn”,
between A and one of the variables. As shown in Fig-
ure 3c, the auxiliary variable A has a weight w, the thorn
A′ has a large weight L, while all the other vertices have
unit weights.

Constructing the CCG

Once we have built the lifted graphical representation of
each weighted constraint independently, we can construct
the lifted graphical representation of the entire Boolean
WCSP in a straightforward manner. We simply “merge”
the vertices—along with their edges—that refer to the same
variables. Then, we assign to each vertex a weight equal to
the sum of the weights of the merged vertices. We refer to
the resulting graph as the CCG of the given Boolean WCSP
instance. Solving the MWVC problem on the CCG is equiv-
alent to solving the original Boolean WCSP instance (Ku-
mar 2008). This procedure allows us to go from “local” to
“global” reasoning elegantly.

As mentioned before, since the CCG aids the reduction of
a Boolean WCSP instance to an MWVC problem instance,
it is able to simultaneously exploit both the graphical and
the numerical structure in the weighted constraints. Graphi-
cally, the MWVC problem instance has the same treewidth
as the constraint network of the original Boolean WCSP
instance (Kumar 2008). Numerically, when the individual
weighted constraints have bipartite lifted representations,
the CCG is also bipartite. In this case, the MWVC problem
can be solved efficiently using maxflow algorithms (Kumar
2008).

The possibility of reducing a Boolean WCSP instance to
an MWVC problem instance inspires a new generation of

Figure 4: Total number of instances solved within a progres-
sively increasing allotted time.

CCG-based WCSP solvers. This paper proposes the use of
such solvers and empirically compares them to other state-
of-the-art WCSP solvers. CCG-based solvers have the ben-
efit of invoking specialized MWVC solvers: These exploit
the fact that there are only two variables per constraint
in the MWVC problem. Moreover, the MWVC problem
is amenable to a kernelization procedure called NT reduc-
tion (Xu, Kumar, and Koenig 2017). In general, kerneliza-
tion is a polynomial-time procedure that reduces the num-
ber of variables in a problem instance before starting search.
Since NP-hard problems are typically characterized by an
exponential search space, reducing the number of variables
via kernelization has significant benefits.

Experiments
In this section, we present experimental results compar-
ing our CCG-based solvers against toulbar2, the state-of-
the-art WCSP solver. We first describe the experimental
setup, including the benchmark instances, the various CCG-
based solvers, the hardware, and other system configuration
settings. Later, we show experimental results rendered as
graphical plots. They portray the performance of the solvers
in finding optimal and bounded suboptimal solutions for the
given problem instances. Finally, we present an analysis of
the results.

Benchmark Instances
We conducted our experiments on 343 Boolean WCSP in-
stances. These come from the ‘evalgm’ repository1 and in-
clude benchmark instances from:

• CFN. A collection of handcrafted, random, and real-
world cost function networks (CFN 2010);

1The WCSP instances in this repository can be freely down-
loaded in “.wcsp” (and many other) format(s) from http://
genoweb.toulouse.inra.fr/˜degivry/evalgm.

• MRF. A collection of problems from the Probabilistic In-
ference Challenge 2011 (PIC 2011), a probabilistic infer-
ence competition on graphical models, that includes seg-
mentation problems and grid networks;

• CVPR. The Computer Vision and Pattern Recognition
OpenGM2 Benchmark (CVPR 2015), a database of dis-
crete energy minimization problems;

• MaxCSP. A collection of problems from the Third Inter-
national CSP Solver Competition (CSP 2008), a competi-
tion based on solving a wide variety of CSPs, Max-CSPs,
and WCSPs.

Methodology
Our framework creates a CCG starting from the input
Boolean WCSP instance. Then, it adopts different strategies
to solve the substrate MWVC problem. This leads to four
different solvers.

1. CCG + Gurobi (w/o kernelization). The MWVC prob-
lem on the CCG is reformulated as an ILP problem. In
turn, this is solved using the Gurobi optimizer. Being an
exact solver, Gurobi guarantees the optimality of the so-
lution it finds, provided that it has sufficient time. Oth-
erwise, Gurobi yields the best solution it is able to find
within the given time. The solution of the ILP problem is
then converted back to a solution of the original problem.

2. CCG + Gurobi (with kernelization). The NT reduc-
tion kernelization procedure is applied to the CCG to re-
duce the size of the MWVC problem instance. Then, the
same strategy described in (1) is used to solve the reduced
MWVC problem instance.

3. CCG + FastWVC (w/o kernelization). The MWVC
problem on the CCG is solved using FastWVC. As it is
based on local search, FastWVC does not necessarily pro-
duce optimal solutions. Even when it does, it is unable to
prove the solution’s optimality.

4. CCG + FastWVC (with kernelization). The MWVC
problem on the CCG is first kernelized via NT reduction.
It is then solved using FastWVC.

Hardware, Compilation, and Run Configuration
The experimental results were produced on a machine
equipped with a 12th Gen Intel(R) Core(TM) i9-12900K
processor and 128GB of RAM. We ran each experiment on a
single performance core, with a frequency of up to 5.20GHz.

Our solvers were implemented in C++ using the Boost
graph library (Boost 2015) and compiled using GCC 7.5.0
with the “-O3” option.

Each solver was given a time limit on each problem in-
stance to find the best possible solution. In all the experi-
ments, the time limit was set to one hour. The CCG-based
solvers were run with default settings. toulbar2 was run
using the parameters “-hbfs” (hybrid best-first search (Al-
louche et al. 2015)), “-dee” (restricted dead-end elimina-
tion (de Givry, Prestwich, and O’Sullivan 2013)), “-V”
(VAC-based value ordering heuristic (Cooper et al. 2008)),
and “-A” (enforcement of VAC at each search node with a
search depth less than the default value 0).

(a) β = 0.01 (b) β = 0.001 (c) β = 0.0001 (d) β = 0.00001

Figure 5: Total number of instances solved with a suboptimality factor β within a progressively increasing allotted time. In all
the figures, the red curve is hidden behind the blue curve.

(a) exactly solved instances (b) β = 0.00001

Figure 6: A summary of the experiments performed on the
CFN collection. (a) Total number of instances solved within
a progressively increasing allotted time. (b) Total number of
instances solved with a suboptimality factor β = 0.00001
within a progressively increasing allotted time. In (a), the
red curve is hidden behind the blue curve. In (b), both the
red and the blue curves are hidden behind the green curve.

Results
We summarize our experimental results from two different
perspectives. First, we show the ability of the solvers to pro-
duce optimal solutions within allotted times. Then, we show
their ability to produce suboptimal solutions for varying sub-
optimality bounds within allotted times.

For the first set of results, we ran all the solvers on all
the instances mentioned previously in this section. Then, we
counted the total number of instances solved by each solver
within an allotted time, which is the same for each instance.
Figure 4 shows these results for a progressively increasing
allotted time (expressed in seconds on the x-axis). For each
value of the allotted time t ∈ {1, 2 . . . 3600}, the corre-
sponding y-coordinate for each solver s is defined as:

ys(t) = number of instances solved by s within t seconds.

This plot does not include the results of CCG + FastWVC
because FastWVC is not guaranteed to produce optimal so-
lutions.

In the second set of results, we highlight the efficiency
and the effectiveness of our solvers at approaching the opti-
mal solution. For this purpose, we counted the total number

(a) exactly solved instances (b) β = 0.00001

Figure 7: A summary of the experiments performed on the
MRF collection. (a) Total number of instances solved within
a progressively increasing allotted time. (b) Total number of
instances solved with a suboptimality factor β = 0.00001
within a progressively increasing allotted time. In both pan-
els (a) and (b), the red curve is mostly hidden behind the
blue curve.

of instances solved by each solver with a suboptimality fac-
tor β within an allotted time, which is the same for each
instance. We denote by As(i, t) the cost of the best solu-
tion found by a solver s for the ith Boolean WCSP instance
within t seconds; and by A∗(i) the cost of the optimal solu-
tion. For each value of the allotted time t ∈ {1, 2 . . . 3600},
the corresponding y-coordinate for each solver s is defined
as:

ys(t) =
∣∣∣{i ∣∣∣ As(i, t)−A∗(i)

A∗(i)
≤ β

}∣∣∣.
Figure 5 shows these results for progressively decreasing
values of β: 0.01 (Figure 5a), 0.001 (Figure 5b), 0.0001
(Figure 5c), and 0.00001 (Figure 5d).

In the third set of results, we categorize the plots accord-
ing to the benchmark collections mentioned in this section:
CFN, MRF, and CVPR. MaxCSP is excluded because there
are only two Boolean WCSP instances in this collection.
This number is insufficient to conclusively show any trends
in the behaviors of the solvers. Figures 6, 7, and 8 show the
categorized results for CFN, MRF, and CVPR, respectively.
In each of these figures, we present two panels. The first
shows the total number of instances solved by each solver

(a) exactly solved instances (b) β = 0.00001

Figure 8: A summary of the experiments performed on
the CVPR collection. (a) Total number of instances solved
within a progressively increasing allotted time. (b) Total
number of instances solved with a suboptimality factor β =
0.00001 within a progressively increasing allotted time. In
(b), the purple curve is hidden behind the cyan curve and the
red curve is mostly hidden behind the blue curve.

within an allotted time, which is the same for each instance.
The second shows the total number of instances solved by
each solver with a suboptimality factor β = 0.00001 within
an allotted time, which is the same for each instance.

Analysis and Discussion
The experimental results highlight how CCG-based solvers
compare to toulbar2 on various performance metrics.

On the CFN collection (Figure 6), our CCG + Gurobi
solvers perform slightly better than toulbar2, as they are able
to solve all the instances in this category in less than one sec-
ond. In comparison, toulbar2 takes considerably more time
to solve some of the instances. In contrast, our CCG + Fast-
WVC solvers are less competitive. In fact, the amount of
time that FastWVC takes to approach the optimum with a
sufficiently good suboptimality factor is generally greater
than the corresponding time taken by its competitors.

On the MRF collection (Figure 7), our CCG-based solvers
are in a more favorable position compared to toulbar2. In
Figure 7a, we observe that the CCG + Gurobi solvers solve
all the instances in less than 1000 seconds, while toulbar2
takes up to one hour to solve some of the instances. Fig-
ure 7b shows that the CCG + FastWVC solvers are able
to find solutions with a good suboptimality factor within a
competitive amount of time. In fact, toulbar2 is only able to
outperform our CCG + FastWVC (w/o kernelization) solver
for small allotted times. In contrast, our CCG + FastWVC
(with kernelization) solver delivers better performance at
finding high-quality solutions for small allotted times.

On the CVPR collection (Figure 8), toulbar2 outperforms
our CCG-based solvers for large allotted times. However,
for allotted times smaller than 2500 seconds, our CCG +
Gurobi solvers are able to solve more instances compared to
toulbar2. In Figure 8b, we observe that our CCG + Gurobi
solvers approach the optimum within a very small amount
of time. In fact, they both find a solution with a suboptimal-
ity factor of 0.00001 for all the instances in less than 1000
seconds. However, on the instances in this collection, our

solvers generally struggle to prove the optimality of an opti-
mal solution after they have found it.

In our experiments, we also observe that kernelization is
not significantly beneficial, despite its theoretical usefulness.
In most cases, it either solves an instance entirely by fixing
the optimal values of all the variables, or is not helpful at all.
This all-or-none effect of kernelization is worth investigat-
ing in future work. We observe some benefits only in Fig-
ure 7, where kernelization is able to fix the optimal values of
all the variables in some instances. In general, enabling ker-
nelization does not deteriorate the performance of the solver
either, since it runs in polynomial time. However, when the
instances are very large, enabling kernelization can incur an
overhead cost, particularly if it is ineffective in reducing the
number of variables. For example, in Figure 8a, we observe
that CCG + Gurobi (w/o kernelization) marginally outper-
forms CCG + Gurobi (with kernelization).

Conclusions and Future Work
In this paper, we presented some CCG-based WCSP solvers
with the intent to simultaneously exploit the graphical and
the numerical structures at an instance level. In the same
framework, we are able to render any improvements to
solvers for the specific MWVC problem as upgrades to
solvers for the more general WCSP. CCG-based solvers also
have the theoretical advantage of enabling kernelization. In
general, we observed that CCG-based solvers outperform
toulbar2 on certain types of WCSP instances, although they
do not dominate it. We envision a next-generation WCSP
solver that combines the complementary strengths of our
CCG-based solvers and toulbar2.

Acknowledgements
This work at the University of Southern California is sup-
ported by NSF under grant number 2112533. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official
views or policies of the sponsoring organizations, agencies,
or the U.S. Government.

References
Allouche, D.; de Givry, S.; Katsirelos, G.; Schiex, T.; and
Zytnicki, M. 2015. Anytime hybrid best-first search with
tree decomposition for weighted CSP. In Proceedings of
the Twenty-First International Conference on Principles and
Practice of Constraint Programming, 12–29.
Boost. 2015. Boost c++ libraries. http://www.boost.
org/. last accessed 23 Nov 2022.
Cai, S.; Li, Y.; Hou, W.; and Wang, H. 2019. Towards faster
local search for minimum weight vertex cover on massive
graphs. Information Sciences 471:64–79.
CFN. 2010. CFLib, library of cost function networks.
http://costfunction.org/benchmark. last ac-
cessed 23 Nov 2022.
Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; and Zyt-
nicki, M. 2008. Virtual arc consistency for weighted CSP.

In Proceedings of the Twenty-Third National Conference on
Artificial Intelligence, 253–258.
CSP. 2008. Third international CSP solver competition
(CSP, max-CSP and weighted-CSP competition). http:
//www.cril.univ-artois.fr/CPAI08/. last ac-
cessed 23 Nov 2022.
CVPR. 2015. OpenGM benchmark. http:
//hciweb2.iwr.uni-heidelberg.de/opengm/
index.php?l0=benchmark. last accessed 23 Nov
2022.
de Givry, S.; Prestwich, S. D.; and O’Sullivan, B. 2013.
Dead-end elimination for weighted CSP. In Proceedings of
the Nineteenth International Conference on Principles and
Practice of Constraint Programming, 263–272.
Gurobi. 2022. Gurobi optimizer reference manual. https:
//www.gurobi.com. last accessed 24 Nov 2022.
Kumar, T. K. S. 2008. A framework for hybrid tractabil-
ity results in boolean weighted constraint satisfaction prob-
lems. In Proceedings of the Fourteenth International Con-
ference on Principles and Practice of Constraint Program-
ming, 282–297.
Kumar, T. K. S. 2016. Kernelization, generation of bounds,
and the scope of incremental computation for weighted con-
straint satisfaction problems. In Proceedings of the Four-
teenth International Symposium on Artificial Intelligence
and Mathematics.
Papadimitriou, C. H. 1994. Computational Complexity.
Addison-Wesley.
PIC. 2011. Probabilistic inference challenge 2011.
http://www.cs.huji.ac.il/project/
PASCAL/realBoard.php. last accessed 23 Nov
2022.
Xu, H.; Sun, K.; Koenig, S.; Hen, I.; and Kumar, T. K. S.
2020. Hybrid quantum-classical algorithms for solving the
weighted CSP. In Proceedings of the Sixteenth International
Symposium on Artificial Intelligence and Mathematics.
Xu, H.; Koenig, S.; and Kumar, T. K. S. 2017. A con-
straint composite graph-based ILP encoding of the boolean
weighted CSP. In Proceedings of the Twenty-Third Interna-
tional Conference on Principles and Practice of Constraint
Programming.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017. The
nemhauser-trotter reduction and lifted message passing for
the weighted CSP. In Proceedings of the Fourteenth In-
ternational Conference on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint
Programming.

