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Abstract

Dynamic time warping (DTW) is a widely used metric for
comparing time series data, offering elasticity in alignment.
While the original DTW allows infinite elasticity without
penalty, the wDTW imposes a constant penalty regardless of
elastic length. In this study, we propose DTW with a progres-
sive penalty. Experimental evaluations across diverse time se-
ries datasets demonstrate the effectiveness of this approach,
utilizing nearest neighbor classification. Optimal hyperpa-
rameters, including the number of neighbors and progres-
sive weight factor, are jointly identified with the Minkowski
p value using Gaussian Process. The proposed methodology
shows promise for enhancing performance across various ap-
plications leveraging DTW.

Introduction
Dynamic Time Warping (DTW) stands as a widely adopted
technique for comparing temporal sequences characterized
by variations in speed or timing. Originally formulated for
speech recognition by Sakoe and Chiba (Sakoe and Chiba
1978), DTW has found applications spanning diverse do-
mains, including handwriting recognition (Cha and Srihari
2002; Tappert, Suen, and Wakahara 1990) and music re-
trieval. The core principle of DTW involves determining the
optimal alignment between two sequences by dynamically
stretching or compressing the time axis of one sequence to
minimize the overall distance between corresponding points
in both sequences. This adaptive approach enables the iden-
tification of similar patterns amidst distortions, delays, or
changes in speed.

The original DTW formulation by Sakoe and
Chiba (Sakoe and Chiba 1978) imposes no constraint on the
stretching of signals. For instance, two signals, s1 = (2) and
s2 = (2, 2, 2), yield the same DTW values to s3 = (1, 1, 1);
DTW((2), (1, 1, 1)) = DTW((2, 2, 2), (1, 1, 1)) as illus-
trated in Figure 1 (a) and (b). In an effort to address this
issue, constraints were introduced to DTW in (Herrmann
and Webb 2023). However, these constraints remain
constant regardless of the elastic length. To mitigate this
limitation, this study proposes the introduction of con-
straints proportional to the length of elasticity. Addressing
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Figure 1: Dynamic Time Warping Illustration

this concern, the present study advocates for the utilization
of progressive constraints as a viable alternative to achieve
superior performance in DTW.

The remainder of this paper unfolds as follows: firstly, we
comprehensively review the original dynamic time warping
algorithm and DTW with constant constraint. Next, we de-
fine the proposed DTW with progressive constraints. Fol-
lowing this, the subsequent section presents the experimen-
tal results obtained through the application of DTW with
progressive constraints, shedding light on its comparative
performance and efficacy in diverse scenarios.

Dynamic Time Warping
The recursive definition of the original DTW by Sakoe and
Chiba (Sakoe and Chiba 1978) is outlined as follows:

DTW(A1∼n, B1∼m) =


0 if n = 0 ∧m = 0

∞ if n = 0⊕m = 0

subst if n,m > 0

(1)

subst = c(an, bm)

+ min

( DTW(A1∼n−1, B1∼m−1)
DTW(A1∼n, B1∼m−1)
DTW(A1∼n−1, B1∼m)

)
(2)

The full computed table on two sample signals is given Fig-
ure 2 (a).



1 4 1 2 1 2 1
3 2 3 5 6 8 9 7
1 2 5 3 4 4 5 5
4 5 2 5 5 7 6 8
2 6 4 3 3 4 4 5
1 6 7 3 4 3 4 4

(a) DTW
1 4 1 2 1 2 1

3 2 4 7 9 12 14 17
1 3 5 4 6 7 9 10
4 7 3 7 6 9 9 12
2 9 6 4 5 7 8 10
1 10 10 5 5 5 7 8

(b) constant (w = 1)-DTW

Figure 2: Dynamic Time Warping Illustration

The DTW with penalty proposed in (Herrmann and Webb
2023) modifies the subst part as follows:

subst = c(an, bm)

+ min

( DTW(A1∼n−1, B1∼m−1)
DTW(A1∼n, B1∼m−1) + w
DTW(A1∼n−1, B1∼m) + w

)
(3)

As shown in Figure 1 (c), constraints remain constant re-
gardless of the elastic length. The full computed table on
two sample signals is given Figure 2 (b).

The proposed DTW with progressive constraint modifies
the subst part as follows:

subst = c(an, bm)

+ min

 DTW(A1∼n−1, B1∼m−1)
DTW(A1∼n, B1∼m−1) + wαH(n,m)−1

DTW(A1∼n−1, B1∼m) + wαV (n,m)−1

 (4)

where α ≥ 1

If α = 1, it yields the same constraint as the constant con-
straint. If α > 1, the constraint becomes progressive. It is
illustrated in Figure 1 (d).

The horizontal and vertical elastic length information
need to be computed by the following equations:

H(n,m) ={
H(n,m− 1) + 1 if ch = min(cd, ch, cv)

0 otherwise
(5)

V (n,m) ={
V (n− 1,m) + 1 if cv = min(cd, ch, cv)

0 otherwise
(6)

where


cd = DTW(A1∼n−1, B1∼m−1)
ch = DTW(A1∼n, B1∼m−1) + wαH(n,m−1)

cv = DTW(A1∼n−1, B1∼m) + wαV (n−1,m)

Experiments
We consider the Bird/Chicken dataset from the UCR Time
Series Archive, aimed at distinguishing between the outline
of a bird and a chicken. The dataset comprises 20 instances
of each class.

Both the original DTW and wDTW algorithms yield an
accuracy of 75%. However, employing Gaussian Process to
optimize hyperparameters, particularly the progressive con-
straint, enhances the accuracy to 85% at w = 0.01 and
α = 1.2.

Conclusion
In conclusion, we have introduced a novel dynamic time
warping with progressive constraint. Our experimental find-
ings demonstrate its superiority over conventional DTW and
DTW with constant constraint. We anticipate that our pro-
posed method holds promise for enhancing the performance
of various applications employing DTW. Future research di-
rections include exploring the efficacy of our approach on
larger and more diverse datasets.
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