

Learning Cohesive Behaviors Across Scales for Semi-Cooperative Agents

Reid Sawtell*, Sarah Kitchen*, Timothy Aris**, and Chris McGroarty**
*Michigan Tech Research Institute (MTRI), 3600 Green Ct., Ann Arbor, MI 48103

**U.S. Army Combat Capabilities Development Command - Soldier Center (DEVCOM SC) Simulation and Training Technology Center
(STTC), USA

*rwsawtel@mtu.edu, snkitche@mtu.edu, **timothy.aris.civ@army.mil, christopher.mcgroarty.civ@army.mil

Abstract
The development of automated opponents in video games has
been part of game development since the very beginning of
the field. The advent of modern AI approaches, such as rein-
forcement learning, has opened the door to a wide variety of
flexible and adaptive AI opponents. However, challenges in
producing realistic opponents persist, namely scalability and
generalizability. Scalability is of particular importance when
many individual opponents are required to act cohesively
over long distances, but this makes learning more difficult.
This paper presents a novel architecture applying graph con-
volutional layers in a U-net with custom pooling operators in
order to achieve learning across scales. League play rein-
forcement learning was used to train competitive agents in a
navigation mesh environment.

 Introduction
Reinforcement learning (RL) provides an optimal policy ap-
proximation approach for a wide variety of complex prob-
lems, including game strategy development. Actor-critic
methods in particular can be formulated as Counterfactual
Regret Minimization (CFR) methods in Multi-Agent RL
(MARL) settings, and therefore converge to a Nash equilib-
rium when the MARL problem can be formulated as a zero-
sum extensive form game (Lockhart, et al. 2019). General-
sum games are more complex, as they consist of both fully
cooperative (potential game), harmonic, and non-strategic
components (Candogan, et al. 2011). The setting of AI agent
development for combat training simulations, and combat
more generally, regularly violates the zero-sum assumption.
Therefore, general sum games, or semi-cooperative stochas-
tic game models, should be considered (Kitchen, et al.
2023).

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons Attrib-
ution-NonCommercial 4.0 International License.

Development of scalable computational models and ap-
proaches for such models is a challenging problem. The ap-
proach taken in this paper is a MARL approach using Deep
Reinforcement Learning (DRL) in an actor-critic framework
for a pair of agents. The state is fully observable and the en-
vironment is deterministic, but the rewards are private for
each agent, and only semi-cooperative, meaning joint ac-
tions of the agents can negatively impact both agents. Sim-
ulation play training provides an approach for developing
best response policies for multiple agents, either sequen-
tially or jointly, though effective implementations are an
open and active area of research, including research into
state and action representations, scalable architectures, mit-
igation and impact of non-stationarity, and associated pa-
thologies (Huh and Mohapatra, 2023). This paper presents a
novel neural network architecture incorporating a hierar-
chical graph model for an environment and associated ex-
periments with the trained AI agents. Experimental results
show behaviors consistent with strategies of general-sum
games.

Methods

Gameplay Environment
Our game environment is derived from the navigation mesh
in a Unity-based simulator. Any undirected graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸) can serve as the game environment, where the nodes
𝑉𝑉 represent terrain patches and the edges 𝐸𝐸 are adjacencies
between them. The game is a dynamic battlefield game in
which a blue (𝐵𝐵) and red (𝑅𝑅) team act simultaneously to ma-
neuver in the environment and capture objective terrain.
Figures 3-5 show an abstract graph environment obtained
through a node-aggregation method applied to a navigation

mesh from an environment implemented in the Unity game
engine.

Each player starts with 10 squads composed of multiple sub-
units. Let 𝒃𝒃 = (𝑏𝑏𝑣𝑣)𝑣𝑣∈𝑉𝑉 denote the vector of squad distrib-
uted over the graph for the blue team, and correspondingly
define 𝒓𝒓 for the red team. On each turn, both players specify
the actions each squad will take, either transitioning to a
neighboring node or remaining in place. Movement is re-
solved concurrently for both players. If after resolving
movement, two or more squads from both players occupy
the same node, combat occurs. Combat follows a Lanchester
model of attrition
𝑏𝑏𝑣𝑣[𝑡𝑡 + 1] = 𝑏𝑏𝑣𝑣[𝑡𝑡] − 𝛼𝛼𝑟𝑟𝑣𝑣[𝑡𝑡], 𝑟𝑟𝑣𝑣[𝑡𝑡 + 1] = 𝑟𝑟𝑣𝑣[𝑡𝑡] − 𝛽𝛽𝑏𝑏𝑣𝑣[𝑡𝑡]
in which the sum of sub-units of both players at a node
𝒃𝒃[𝑡𝑡], 𝒓𝒓[𝑡𝑡] at time 𝑡𝑡 determines the casualties the opponent
will take, which are then randomly removed from the squads
present at the battlefield node (Taylor, 1979). The scalar
multipliers 𝛼𝛼 and 𝛽𝛽 are defined by node and are used as com-
bat modifiers representing fortification of the position at that
node. For these nodes, the first player that occupies the node
for more than one turn receives a bonus multiplier to the at-
trition parameter. This bonus will begin the turn after the
node is occupied and gradually increases until reaching a
maximum after the third turn after the node is occupied. The
bonus is lost if the player no longer occupies the node, but
otherwise squads can come and go freely without losing the
bonus so long as at least one remains at the end of any turn.
Abandoned nodes reset to their original combat multiplier
value and may be re-occupied by any player with the same
effect.

Our environment is highly configurable, allowing it to be
used to define and autonomously play a wide variety of sce-
narios on arbitrary graphs. This is accomplished by means
of a scenario initialization function, configuring the initial
environment parameters and goal weights 𝒈𝒈 = (𝑔𝑔𝑣𝑣)𝑣𝑣∈𝑉𝑉 for
each player, subject to the constraint such that ∑ 𝑔𝑔𝑣𝑣𝑣𝑣∈𝑉𝑉 = 1.
The functionalization of this process is needed to specify
complex configurations, such as randomized start or goal lo-
cations in the reinforcement learning process described be-
low.

Objectives and Rewards
Since our game is based on battlefield style games, the ob-
jective for each player is to capture terrain specified in ini-
tialization. A terminal reward for a game is defined by a dis-
tribution of forces over one or more goal nodes with a pri-
ority weight that indicates the percentage of forces which
should ideally occupy that node. Maximum reward is
achieved if the player occupies every goal node with the cor-
rect proportion of forces when the scenario ends. A node is
considered occupied if the player has at least one squad with

units remaining and no opponent units are alive at that node.
Partial rewards are achievable, with each occupied goal
node contributing based on its priority.

To account for the distribution, the goal reward is modulated
by the Earth Movers Distance (EMD) needed to achieve per-
fect distribution over all objectives, as well as an attrition
penalty for losing too many units in combat. The EMD be-
tween two discrete distributions on a weighted graph is the
normalized work required to flow one distribution to the
other with a cost-minimizing flow. In our model, each
team’s forces are converted to a distribution over the envi-
ronment graph via normalization, so the EMD between the
current position of a player’s forces and the goal distribution
for that team effectively calculates the shortest path distance
to reach the goal, in the absence of any combat. For simplic-
ity, we show only the reward function definitions for the
blue team, with 𝒃𝒃� denoting the normalized force vector. The
terminal reward for 𝐵𝐵 is defined by

where 𝐿𝐿 is an attrition penalty that is < 1 if too many
forces are lost, 𝛾𝛾 is a weight, and

where 𝜒𝜒 denotes an indicator function. In the development
of these reward functions, we chose to prioritize the rela-
tionships between the units and the objective terrain goals.
They are rewarded for capturing their goals, but the inclu-
sion of EMD provides a metric for the players to be re-
warded for positioning forces near their goals in a way that
is meaningful in a distributional sense. By also including a
penalty for losing too many forces via 𝐿𝐿, the player can
learn to “fall back” to nearby positions to their goals if the
losses for capturing the objective terrain are too high.

To encourage movement towards the goals, an incremental
reward also based on the EMD is employed. This reward is
needed for the network to begin to converge on a solution
on larger graphs but is not required for smaller graphs. It is
deliberately smaller than the achievable goal rewards in or-
der to not unduly bias the agents towards shortest path
movement at the expense of strategy. A common issue in
reinforcement learning is defining the right balance of incre-
mental and sparse rewards, particularly when the horizon to
the terminal condition in a training episode is long. Alterna-
tive incremental rewards, such as those including a time de-
cay parameter, or related curriculum training strategies,
could be used to improve the policies derived in this model
in the future. The incremental reward at time 𝑡𝑡 is defined by

𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
∑ 𝜒𝜒𝑏𝑏>0(𝑏𝑏�𝑣𝑣)�𝑔𝑔𝑣𝑣𝑣𝑣∈𝑉𝑉

∑ √𝑔𝑔𝑣𝑣𝑣𝑣∈𝑉𝑉

𝑅𝑅𝐵𝐵 =
𝐿𝐿(𝒃𝒃)𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾�𝒃𝒃�,𝒈𝒈�

where 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 are constants, and 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 is a weight. In
the implementation used for experimentation, 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 was an
order of magnitude larger than 𝛾𝛾.

Agent Actions and Observations
Each player in the game is controlled by a neural network
agent, consisting of a feed forward graph neural network.
The network takes as input the observations generated by
the environment and outputs agent controls. Observations
are represented as node attributes and include the per squad
location, the proportion of player forces, the proportion of
opponent forces, the goal weight, player fortification bonus,
and opponent fortification bonus. The player and opponent
force proportions are normalized relative to the maximum
number of units any player has accumulated on any one
node of the graph. Notably, the coordinates of the nodes are
not included. The output consists of a per-squad per node
weight. The environment also provides an action mask
which is used to eliminate impossible actions. The remain-
ing values are used in a standard softmax probability distri-
bution to select the node transition.

Additionally, the network outputs a separate per squad
“sticky” action probability. The sticky action also follows a
softmax probability approach to determine if it is enabled or
not for a given squad. The result is that all squads that oc-
cupy the same node, and have the sticky action defined, will
act in concert. This is achieved by randomly choosing one
of the actions of the participating squads and changing all of
those squads’ actions to that action. This additional specifi-
cation is necessary to allow the AI agent to more deliber-
ately control multiple squads by effectively aggregating
them into a single larger unit via the sticky action. Without
it, the agent can only probabilistically assign actions to each
individual squad, which provided the course of action is not
crystal clear, allows for random walking actions according
to the current policy. Consider a simple scenario in which
all squads occupy the same node, and there are two neighbor
nodes which are of equal interest to visit, but the agent
wishes to keep its forces massed. Specifying 50% squad
transition probability to each neighbor node will result in
roughly half of the squads at each node, when what the agent
really wants is to specify that all squads will go to one of the
two nodes with 50% probability. With the sticky flag speci-
fied, the agent is able to group the squads, ensuring that the
group will move together to one of the two nodes.

Network Architecture
Our network architecture is a graph convolutional U-Net
(Ronneberger et al. 2015) with skip connections, imple-
mented in PyTorch. The U-Net architecture is necessary to
transmit information across many nodes in the graph. With-
out it, the agent can only learn on small graphs or scenarios
in which it starts fairly close to its goal nodes. Pooling and
unpooling across layers of the U-net is implemented using a
custom hierarchical mesh aggregation scheme. The initial
graph, which is a graph covering the topology of the envi-
ronment, is fed through a quadric mesh simplification algo-
rithm, which reduces the size of the mesh using edge col-
lapse. Some advantages of this algorithm are that it does not
require a planar graph, and edge collapse preserves the con-
nectivity of the reduced graph relative to the original. When
the mesh size reaches certain milestones (4, 16, 64, and 256x
reduction), the reduced graph is saved as well as the map-
ping from the previous graph to the new one. In the imple-
mentation used for the experiments, five graphs, as well as
the four mappings between them, are inputs to the network
module. Pooling and unpooling are accomplished with ma-
trix multiplication: Node features across nodes contracted to
the same node in a smaller graph are added when pooling
into the reduced graphs, and node features are replicated
across nodes in the preimage of a coarse node when unpool-
ing to the finer graphs.

We found graph convolution by itself (PyTorch GCNConv)
to be insufficient for the network to learn. As an alternative,
we altered the formulation by adding skip connections
around each GCNConv layer followed by a linear layer, as
shown in Figure 1.

This block allows a network to encode the relative impact of
diffusion across the graph obtained by a single message
passing step in the GCNConv. A similar network block in-
corporating skip connections from the pooling layers is ap-
plied between unpooling layers. An overview of the archi-
tecture is shown in Figure 2.

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖[𝑡𝑡] = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄ [𝑡𝑡] + 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡]⁄
𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑡𝑡] = 1 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸(𝒃𝒃�[𝑡𝑡], 𝒈𝒈)

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚[𝑡𝑡] = 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑡𝑡] − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 max
𝜏𝜏<𝑡𝑡

{𝐸𝐸𝐸𝐸𝐸𝐸(𝒃𝒃�[𝜏𝜏], 𝒈𝒈)}

Figure 2 Architecture of a Differential Graph
Convolution (DiffG) block.

Figure 1 Architecture overview for backbone
network used in both actor and critic networks.

This forms the backbone network architecture and is used in
both the actor and critic, though weights are not shared. The
output of each network (actor and critic) is obtained by pass-
ing the representation 𝒔𝒔 into linear layers of appropriate di-
mensions. This backbone successfully achieved learning
whereas alternative strategies, such as Diffpool aggregation
layers or deeper GCNConv network architectures, could
not. Nonetheless, the networks will still fail to learn without
the addition of the continuous EMD-based rewards, which
we had avoided adding initially on the assumption that it
would bias the agent too much towards shortest path behav-
ior, and prohibit more complex strategies, such as taking a
longer path to avoid a heavily fortified node.

Training
Agents are trained using a custom distributed PPO actor
critic formulation (Schulman et al. 2017). Since the game is
two player, separate actor and critic networks are initialized
for each player resulting in a total of four networks. A num-
ber of client processes are started, which can be on the host
computer or any networked computers. The client processes
each spin up a specified number of child workers, which are
responsible for running the environment simulation and re-
turning the experiences. The “head” process is responsible
for specifying the particular graph and game scenario that
will play out in the client environments. At the start of each
epoch, the head process shares the current network weights
and environment graph and initializer function with all con-
nected client processes. The number of required environ-
ment steps is then split into a configurable number of jobs
which are placed on a queue for the client processes to pick
up. The client processes then simulate the required steps and
return all relevant information, such as diagnostic infor-
mation, the action history, advantages, loss, etc. The head
process waits for all client jobs to return, then aggregates the
returned values into an experience buffer, which is passed to
the PPO algorithm to generate the network loss. Then, an
Adam optimizer updates the network weights. Since each
player acts concurrently, and has distinct state space obser-
vations, it is viable to train both networks at once. Training
data from each simulation is gathered for both players, and
the updates are performed separately for each player. For
our PPO algorithm, we specify a minibatch size of 250 steps,
with 4 mini-batches per epoch (1000 environment steps per
epoch). The PPO update terminates after 10 iterations or KL
divergence exceeds a value of 0.01. We did not use entropy
loss for the experiments presented here, but we did include
it as a capability in our implementation. The Adam optimiz-
ers were configured with a learning rate of 1e-4.

Our setup allows for curriculum training since the scenarios
can be altered at each epoch, and we have found that limiting
the scenario length initially can accelerate convergence in

learning to navigate squads towards the goal nodes. How-
ever, this was unnecessary for the scenarios presented here.

Experiments

We used a single graph hierarchy to perform two experi-
ments with our environment and network architecture. The
same graph was used for all experiments and was processed
through the hierarchical graph simplification procedure to
produce the graph and mapping set necessary for the graph
pooling algorithm. Each network was allowed to train for a
period long enough that the behavior was no longer signifi-
cantly changing, which typically takes between 2000-12000
epochs depending on scenario complexity. All experiments
were trained on a Dell Precision workstation with a Xeon 8
core CPU and NVIDIA GeForce RTX 3080 laptop GPU.
The client was configured with 7 parallel environment
threads. Additional networked clients were not used for
these experiments. A single epoch averages around 7 sec-
onds, leading to total training times of 4-24 hours. The ma-
jority of the training time, approximately 4/5, was spent sim-
ulating the environment steps. The environment steps are
typically slower since the networks are evaluated on CPU
since they cannot be batched.

Experiment 1: Impact of Relative Force Strength
on Learned Policies
Red starts with all squads in the upper left corner of the map,
while blue starts in the lower left. Both players have the
same goal node near the center of the map, which is 12 steps
away from either starting position. The goal node is the only
node that can be fortified. Two sets of policies were trained:
one set with Blue initialized with 1/10th the forces of Red,
putting it at a distinct disadvantage (i.e. the “weak” Blue
player); the other with equally-matched forces (i.e. the
“strong” Blue player). The question we aimed to answer
with this experiment was how the influence of EMD in the
incremental reward would be impacted as the combat power
of the opposing forces increased from unbalanced to equally
balanced. Since the EMD incentivizes each AI player to
route its forces to the goal node along the shortest path in
the graph, one expected impact of increasing attrition by
changing the force numbers would be less direct trajectories
to a goal to avoid the opposing force.
Experiment 2: Impact of Distributed, Semi-Coop-
erative Goals on Learned Policies
In this experiment, Red randomly starts in one of 4 corner
positions while Blue spawns in the opposite position to that
which Red spawns in. The central primary goal node re-
mains the same for both players, but each has a collection of
6 secondary goal nodes in close proximity to the primary
goal node. Three of these secondary goal nodes are shared

for each player, while the other three are distinct. The goal
nodes do not change from run to run, only the start positions.
Both players have evenly matched forces. In this experi-
ment, the primary goal node cannot be fortified but its neigh-
boring nodes, which includes some of the secondary goal
nodes, can be. The objective of this experiment was to de-
termine the impact of the semi-cooperative goals on the
learned policies. Namely, whether attrition to decisively
capture the shared goals was preferred to the non-conflict
goals. Fortification in the non-conflict nodes should allow
each player to adversely influence the trajectory of the op-
posing player towards the common goal.

Results

In Experiment 1, the weak Blue player learns a shortest path
from its start position to the goal while red learns a path that
is one step longer than the shortest, and also displays more
diffusive behavior in its learned policy. This is a conse-
quence of the force imbalance between the weak Blue and
Red forces, since Blue needs its full mass to achieve meas-
urable attrition against Red, but Red does not need its full
force to achieve overmatch vs. the weak Blue. Compared to
the equally matched strong Blue vs. Red, both players
demonstrate expected trajectories that are mostly directed
along the shortest path, with some diffusivity. Both players
must effectively mass forces at the goal to have any hope at
capturing it (Figure 3).

Notably, in the learned policies for the weak Blue player,
the Red and Blue agents alternate positions between the goal
node and adjacent node. While the Red player lands on the

goal node as the scenario ends the majority of the time, Blue
exploits mis-timings by Red and claims the goal for itself.
Combat is relatively rare, likely due to occasional blue/red
getting out of step in the dance. Attrition of the opposing
force is not incorporated into the reward structure, so this is
an emergent cooperative behavior, reflecting the expecta-
tion that the policies should converge to an equilibrium that
jointly optimizes the expected reward for both players.
Since Red can always capture the goal, the learned policy
balances the ability to capture the goal in expectation while
minimizing force loss. Combat at the goal node is instead
required when the forces are equally-matched.

The policies learned in Experiment 2 demonstrate an uneasy
truce between Red and Blue (Figure 4). Blue pursues the
primary goal and a few of its secondary goals. Red settles
for several of its secondary goals but places much of its
forces on one of the sub-goals nearest the primary goal,
which helps reduce the EMD penalty to not occupying the
primary goal. Combat is fairly rare and happens mostly
when Blue passes through Red to get to the primary goal.

These experiments show that a relatively small graph con-
volutional network, with a few modifications, can learn in-
teresting behaviors in a combative graph environment. In
our testing, it was critical to include our custom graph pool-
ing, the differential convolution block, as well as the contin-
uous EMD reward to obtain policies that converged via

Figure 4 Visitation rates of learned policies for policies trained
with random opposite starting corners and semi-cooperative goals

Figure 5 Visitation rates of learned policies for (A) The weak
Blue vs. Red policies and (B) the strong Blue vs. Red policies.

The goal node is circled in green.

Figure 3 Visitation rates for terminal states in Experiment 2.
Blue tends to capture the goal node, with Red populating adja-

cent sub-goals.

training. Lacking any of these, the policies fail to converge
to cohesive behaviors and either demonstrate diffusive be-
havior or to taking no action.

To further understand what the networks have learned, we
tested the trained actor networks from Experiment 2 by
changing scenario conditions, such as the start and goal lo-
cations. The policy behavior showed almost no response to
a change in the goal or initial position, implying therefore
that the location of the goal used in training was encoded
into the learned weights of the network.

To further investigate this, we probed the network response
to deliberate changes in the input observation. Changing the
goal position has a slight effect on the probability distribu-
tions (Figure 6, top), but not enough to change the overarch-
ing behavior. A similar lack of impact is noted for changing
the Blue force location (Figure 6, bottom). Changing the
node fortification bonuses for the map has a considerable
effect that results in diffusive behavior (Figure 6, middle).
We hypothesize that the actor network has learned to treat
the fortification bonuses as topological features in the graph,
and this plays a significant role in the exhibited trajectories
for the trained agents.

Conclusions

The implemented architecture demonstrates successful
MARL training for a large graph environment and incorpo-
rates learned force aggregation behaviors via the “sticky”
action. However, the trained policies in this model are “con-
flict-avoidant” since the reward function only incorporates
penalties for attrition of one’s own forces and no rewards for
attrition of the opposing force. The joint training produces
policies that are emergently cooperative, despite the rewards
being only semi-cooperative.

The impact of the hierarchical graph architecture is that our
actor networks learned an approximately shortest path to a
desired node, with a strong indication that the location of the
goal nodes is encoded in the learned network weights. How-
ever, the semi-cooperative reward structure for the agents
resulted in policies that behave as strategies in general sum

games. Namely, although the reward structures are private
to the individual game agents, cooperative joint strategies
are demonstrated by the trained policies, such as the weak
Blue learning to “dance” with Red in Experiment 1 in the
hopes of exploiting a flaw in the timing of the Red agent
ending the scenario on the objective node. Attrition is mini-
mized for both teams, though it is only significantly costly
for Blue when overmatched by Red. Similarly, in Experi-
ment 2, Red and Blue converged to the cooperative strategy
in which Blue captured the conflicting goal node, and Red
learned to be satisfied with nearby sub-goals, thereby avoid-
ing costly combat with an opponent.

By performing introspection on the actor network, we veri-
fied that the learned weights of the network are encoding the
node locations and topological information, including a top-
ological representation of the location of fortified nodes,
which substantially change the ability of forces to maneuver
through the environment.

Recommendations
Achieving better generalization of performance will be a fo-
cus for further research. One possible avenue is to allow net-
works to observe a wider variety of scenarios, much like Ex-
periment 2 where the Red team learned to get to its desired
goal from nearly any position in the map, even if it rarely, if
ever, visited those nodes during training. Additional inves-
tigation into network capacity may be required in order to
expand the training conditions, as our networks are rela-
tively small to promote faster training times.

An alternative approach worthy of exploration is the decom-
position of the combat problem into maneuver and combat
sub-games, in which the incremental rewards in this paper
are over-weighted in the maneuver game, which would be
used to flow the forces into a “combat zone”, and a smaller
graph neighborhood is used for the combat sub-game using
only the sparse terminal reward. In order to combine the ma-
neuver and combat sub-games, an options framework could
be incorporated to switch between the two games (Vezhne-
vets, et al. 2019).

Acknowledgements
This material is based upon work supported by the US Army
Combat Capabilities Development Command Soldier Cen-
ter (DEVCOM SC) Simulation and Training Technology
Center (STTC) under contract No. W912CG-21-C-0016.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the DEVCOM SC
STTC.

Figure 6 Activation changes in Red actor network from Experi-
ment 2 subject to state input changes (Goal Location, Fortifica-

tion, and Blue Position).

References
Candogan, O., Menache, I., Ozdaglar, A. and Parrilo, P.A., 2011.
Flows and decompositions of games: Harmonic and potential
games. Mathematics of Operations Research, 36(3), pp.474-503.
Claus, C. and Boutilier, C., 1998. The dynamics of reinforcement
learning in cooperative multiagent systems. AAAI/IAAI,
1998(746-752), p.2.
Huh, D. and Mohapatra, P., 2023. Multi-agent Reinforcement
Learning: A Comprehensive Survey. arXiv preprint
arXiv:2312.10256.
Kitchen, S. and Brawner, K., 2022, May. Aggregation of Hierar-
chically-Organized Agents in a Multi-Agent System. In The Inter-
national FLAIRS Conference Proceedings (Vol. 35).
Kitchen, S., McGroarty, C. and Aris, T., 2023, May. Model Rep-
resentation Considerations for Artificial Intelligence Opponent
Development in Combat Games. In The International FLAIRS
Conference Proceedings (Vol. 36).

Lockhart, E., Lanctot, M., Pérolat, J., Lespiau, J.B., Morrill, D.,
Timbers, F. and Tuyls, K., 2019. Computing approximate equilib-
ria in sequential adversarial games by exploitability descent. arXiv
preprint arXiv:1903.05614.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolu-
tional networks for biomedical image segmentation. In Medical
image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-
9, 2015, proceedings, part III 18 (pp. 234-241). Springer Interna-
tional Publishing.
Schulman J., Wolski F.,Dhariwal F., Radford A., and Klimov O.
2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.
Taylor, J. G. (1979). Attrition modelling. Operationsanalytische
Spiele für die Verteidigung, 139-89.
Zhang, K., Yang, Z. and Başar, T., 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms.
Handbook of reinforcement learning and control, pp.321-384.
Vezhnevets, A. S., Wu, Y., Leblond, R., & Leibo, J.Z., 2019, Op-
tions as responses: Grounding behavioural hierarchics in multi-
agent RL. Retrieved from arXiv preprint: arXiv:1906.01470.

	Abstract
	Methods
	Our game environment is derived from the navigation mesh in a Unity-based simulator. Any undirected graph 𝐺=,𝑉,𝐸. can serve as the game environment, where the nodes 𝑉 represent terrain patches and the edges 𝐸 are adjacencies between them. The gam...
	Each player starts with 10 squads composed of multiple sub-units. Let 𝒃=,,,𝑏-𝑣..-𝑣∈𝑉. denote the vector of squad distributed over the graph for the blue team, and correspondingly define 𝒓 for the red team. On each turn, both players specify the ...
	,𝑏-𝑣.[𝑡+1]=,𝑏-𝑣.[𝑡]−𝛼,𝑟-𝑣.[𝑡], ,𝑟-𝑣.[𝑡+1]=,𝑟-𝑣.[𝑡] −𝛽,𝑏-𝑣.[𝑡]
	in which the sum of sub-units of both players at a node 𝒃,𝑡., 𝒓[𝑡] at time 𝑡 determines the casualties the opponent will take, which are then randomly removed from the squads present at the battlefield node (Taylor, 1979). The scalar multipliers ...
	Our environment is highly configurable, allowing it to be used to define and autonomously play a wide variety of scenarios on arbitrary graphs. This is accomplished by means of a scenario initialization function, configuring the initial environment pa...
	Since our game is based on battlefield style games, the objective for each player is to capture terrain specified in initialization. A terminal reward for a game is defined by a distribution of forces over one or more goal nodes with a priority weight...
	To account for the distribution, the goal reward is modulated by the Earth Movers Distance (EMD) needed to achieve perfect distribution over all objectives, as well as an attrition penalty for losing too many units in combat. The EMD between two discr...
	where 𝐿 is an attrition penalty that is <1 if too many forces are lost, 𝛾 is a weight, and
	where 𝜒 denotes an indicator function. In the development of these reward functions, we chose to prioritize the relationships between the units and the objective terrain goals. They are rewarded for capturing their goals, but the inclusion of EMD pro...
	To encourage movement towards the goals, an incremental reward also based on the EMD is employed. This reward is needed for the network to begin to converge on a solution on larger graphs but is not required for smaller graphs. It is deliberately smal...
	where ,𝐸-𝑑𝑖𝑓𝑓. and ,𝐸-𝑚𝑎𝑥. are constants, and ,𝛾-𝑖𝑛𝑐. is a weight. In the implementation used for experimentation, ,𝛾-𝑖𝑛𝑐. was an order of magnitude larger than 𝛾.
	Experiments
	Results
	Conclusions
	Recommendations
	Acknowledgements
	References

