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Abstract
Smart manufacturing is an important part of our critical in-
frastructure and is the current age of industry where phys-
ical components such as robotic arms, 3-D Printers, CNC
machine, etc. are all interconnected and remotely controlled
or automated which provides a major boost in efficiency.[9]
While these systems are more convenient, the cyber-physical
integration expands the attack surface of these systems for
any potential threats to act on and exploit. This integration
also creates gaps in the current intrusion detection systems
(IDS) and the research of such systems as they focus on ei-
ther the cyber or physical components of these system which
leaves blind spots when an attack can only be detected by
using either cyber or physical data. This paper presents an
experiment conducted to fill that gap by creating a cyber-
physical testbed, launching Denial of Service and Physical
Hijacking attacks, collecting benign and malicious data, and
creating a hybrid IDS utilizing K-Nearest Neighbors and De-
cision Tree models that consider both cyber and physical data.
This hybrid IDS produced good results, achieving an accu-
racy of 97.2% which is roughly the same as separate cyber
and physical IDSs, but there is a significant boost in precision
(98.4%), recall (94.2%), and F1 score (96.1%) when using
the hybrid IDS compared to the separate IDSs.

Introduction
Smart manufacturing is the latest step in advancing the man-
ufacturing industry, where most components that are man-
ually operated can now be done autonomously and con-
trolled remotely. Common smart manufacturing systems
would include machines like robotic arms, precision cut-
ters, conveyor belts, 3-D printers, etc. These systems use
Programmable Logic Controllers (PLCs), Human Machine
Interfaces (HMIs), and networking to create a cooperative
environment where machines of similar and different types
work together with human interaction to create a complete
production system.

Smart manufacturing systems are considered to be a part
of our critical infrastructure meaning that they are crucial
to our day-to-day operations. As part of our critical infras-
tructure, if something where to go wrong within these sys-
tems, it could cause a great amount of damage to both phys-
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ical infrastructure and human life. In the past few years, we
have witnessed a rise in attacks on these critical infrastruc-
tures that led to devastating effects. In 2021, there was a ran-
somware attack on Colonial Pipeline that led to the shut-
down of a main gas supply line that ran through and sup-
plied gas to the entire east coast of the United States.[10]
The shutdown caused major disruptions and panic of citizens
as well as major safety concerns as many citizens, in panic,
began to mass purchase gas and store it in unsafe containers.
In late 2023, there was an attack on the Pennsylvania water
authority that led to a shutdown and eventual manual oper-
ation of a remote pumping station that regulates pressure to
local towns.[11] This attack targeted specific PLCs with de-
sign flaws that led to the breach and affected the water flow
to the local towns. This same attack was also executed across
several other industries that utilized the same type of PLC.
These recent attacks show that our cyber-physical critical in-
frastructure is vulnerable and currently available to exploit.
As a result, there is an urgent need to develop effective in-
trusion detection systems (IDS) that can detect and mitigate
these serious attacks.

Currently, the research in this field [1]-[8] is limited in its
execution, meaning that it uses either cyber data or physical
data when developing their IDS. These infrastructures are
cyber-physical systems, which means that using only cyber
or physical data leaves the IDS blind to half of the picture.
This can lead to undetected attacks because they only mani-
fest in either the cyber or physical space and are virtually in-
visible in the other space. To address this limitation, we pro-
pose in this paper a hybrid IDS that fuses cyber and physical
models to effectively detect attacks on cyber-physical sys-
tems. Our contributions in this paper can be summarized as
follows:

• We develop a cyber-physical testbed that mimics a smart
manufacturing facility with robotic arms. Then, we launch
two attacks that manifest in the cyber domain or in the
physical domain, and collect benign and malicious data
needed to develop an IDS.

• We develop an ensemble machine learning model for the
IDS based on cyber-physical fusion utilizing K-Nearest
Neighbors and Decision Tree models.

• We conduct comprehensive evaluations of our developed
IDS, which show that our model achieved the same ac-



curacy as classical models (97% − 98%) and improved
precision (98%), recall (94%), and F1 score (96%).

The remainder of this paper is organized as follows. Sec-
tion II reviews the related works and highlights their limi-
tations. Section III details the components of the developed
testbed and outlines the workflow of the system. Section IV
details the type of datasets collected, the tools that are used
to collect the data, the attacks that are executed, and the steps
to pre-process the data for training. Section V details what
machine learning models are used and how cyber-physical
data fusion is achieved. Section VI reviews the results and
discusses the findings. Finally, conclusions are given in Sec-
tion VII.

Related Work
This section reviews the related works and highlights their
limitation to motivate our work.

Cyber-Only IDS Research Cyber-only IDSs are trained
solely on cyber data features. This type of data is collected
from the various interactions/communications between ma-
chines. IP addresses, port numbers, sizes, payloads, etc. are
typical features you would find in a cyber dataset.

In [6], a tool called C3PO is developed for security analy-
sis to identify security threats for networked 3D printer. This
tool is used to analyze 13 networked printers and five real-
world network deployments. The work in [1] discusses the
use of a state-based IDS for robotic arms that uses a hierar-
chical support vector machines based on the particle swarm
optimization algorithm. The IDS uses real-time joint data to
determine the state the robotic arm is in and if there is any
anomalies. This paper also discussed an automated response
to a detected incident. The work in [2] discusses the use
of a Snort-BASE IDS for detecting DoS attacks on robotic
arms. The described system uses Snort to record the network
traffic between the arm and its controller and uses BASE to
perform analysis on the recorded network traffic. This work
also describes the tests performed on a robotic arm with six
degrees of freedom in both a completely simulated environ-
ment and physical implementation.

Physical-Only IDS Research Physical-only IDSs are
trained solely on physical data features. This type of data
is collected from physical instruments or sensors that are
placed in the physical world. Temperature, speed, location,
pressure, etc. could be features you would find in a physical
dataset.

The work in [4] proposes a new framework that incorpo-
rates Blockchain to secure a quality control application of
the entire supply chain(supplier, manufacturer, and retailer).
It also uses machine learning techniques and supply chain
data to predict the quality of the product being produced.
The work in [5] explores security of smart manufacturing
systems and answers four questions: Under which condi-
tions are certain attacks possible, what is their impact, are
there any overlooked attack vectors, and what is the secu-
rity impact of the current software-development practices.
To answer these questions they set up an environment and
ran four attack scenarios: HMI exploitation, compromise via

3rd-party firmware libraries, persistence and production al-
teration, and add-in or digital twin compromise. The work
in [3] discusses the use of cameras in the working space of a
robotic arm to detect its proximity to a human. It uses a com-
bination of color and 3-D Time of Flight information to de-
tect where the arm and human are and calculate the distance
between them. The goal of this system is to prevent any col-
lision between human and robotic arm to prevent injuries.
The work in [7] proposes a scheme for intrusion detection
for 3D printers through acoustic signature, real-time track-
ing of machine components, and post production materials
analysis. They made a connection between the instruction
given and the noise the resulting action made while print-
ing. They use this connection as well as tracking where the
machine components are supposed to be and what they are
supposed to be doing to build an intrusion detection sys-
tem. The work in [8] proposes a framework for intrusion
detection that compares real-time side-channel signals. This
framework also proposes a new tool that fixes time differ-
ences between measurements on different runs on the same
system.

Limitations of Literature
There are two main limitations in the literature. The first is
that there are several works that limit their testing to only a
single type of attack. This limitation can lead to many blind
spots in IDSs because they are used for all-round attack de-
tection and if they cannot detect multiple types of attacks
with high accuracy then they become obsolete. The first lim-
itation leads to the second, which is that no research devel-
ops an IDS that utilizes cyber-physical data fusion. Cyber-
physical data fusion is the creation of a new dataset that
merges the cyber data and physical data, so a single instance
will not only have cyber features like IPs, port numbers,
protocols, etc. but also physical features like temperature,
speed, position, etc. Cyber-physical data fusion provides a
more holistic dataset that when used for training has the po-
tential to build a more robust IDS that could detect multiple
types of attacks that other detection systems would be blind
to.

Testbed Details
To develop a hybrid cyber-physical IDS and test our hypoth-
esis that cyber-physical fusion leads to better IDS, we de-
veloped a testbed that mimics a smart manufacturing envi-
ronment. Our testbed has two main layers, the physical layer
and the cyber layer. The physical layer consists of four com-
ponents: one Trossen Robotics PX100 robotic arm[12], one
Raspberry Pi 4, one Netgear GS308[13] networking switch,
and a laptop. The PX100 arm is a robotic arm that has four
degrees of freedom operated by five DYNAMIXEL XL430-
W250 Servos[14] and controlled by a DYNAMIXEL U2D2
board[15]. The U2D2 controller board is connected to the
Raspberry Pi 4 through a USB to Micro-USB connector.
This Raspberry Pi 4 acts as a PLC and is running a light-
weight operating system installed with ROS Noetic[16],
Python, and custom Python wrappers provided by Trossen
Robotics[17]. Each of these three softwares plays a cru-
cial role in the operation of the arm. ROS Noetic facilitates



the connection and control signals to make the arm move.
Python is used the create programs that call on ROS Noetic
to change control signals. The custom Python wrappers pro-
vide easy-to-use API functions that make calling on ROS
simpler. The Raspberry Pi has Wi-Fi disabled and is also
connected to a laptop through an Ethernet connection via
the unmanaged Netgear GS308 switch.

The second layer, the cyber layer, of this testbed consists
of four components: a controller, an HMI, a logger, and an
attacker. All four of these components are housed in virtual
machines (VM) installed on the laptop. The controller, HMI,
and logging VMs are all running Ubuntu 16.04 and ROS
Melodic[16]. These three machines are connected to each
other and the physical system through a NAT network and
each machine also serves a specific purpose in the testbed.
The controller VM is used to remotely communicate with
the Raspberry Pi and control the arm. It does this using
custom python scripts that load programs onto the Pi and
remotely execute them. The HMI VM is used to remotely
monitor the movements of the robotic arm in real-time by
utilizing ROS communications and Rviz to provide a graph-
ical view of the real arm. The logging VM is used to col-
lect the data from both the physical arm and network/cyber
data from the entire testbed. For physical data collection,
the machine utilized a ROS communication package to pull
joint state data from the arm. For networking/cyber data col-
lection, the machine uses Wireshark to capture all network
packets in the testbed. The final VM in the cyber layer is the
attacker box. This VM is running Kali Linux and is used to
simulate a malicious machine, compromised or otherwise,
on the system to disrupt operations.

The overall workflow of the testbed is as follows. First,
the Raspberry Pi and robotic arm are powered, the Pi startup
script is run to connect to the arm and it waits, listening for
commands to run. Second, the monitoring VM is connected
to the Pi to begin monitoring the arm in real time. Third, the
logging machine begins logging both physical joint states
and network data. Finally, the control machine connects to
the Pi and sends a program and executes it making the arm
perform desired functions. The final step can be repeated as
many times as necessary.

Data Collection
As discussed in the previous sections, there are two layers of
the testbed and we want to collect data from both layers to
study advantages and disadvantages of using cyber-physical
data fusion when detecting various types of attacks. To ac-
complish this goal, two different tools are used. The first tool
used is Wireshark to collect all network traffic packets trav-
eling across the network of the testbed. Hence, the cyber data
collected from the network are Packet No., Time, Source IP,
Destination IP, Protocol used, Length of packet, and Pay-
load of the packet. The second tool used is RosTopic, which
is a data analytic software package from ROS that allows
for the collection of joint states of the robotic arm. Each in-
stance recorded contains three sets of seven measurements
taken from the arm. There is one set of position measure-
ments where the current orientation of the five servos and

two fingers of the arm are recorded. There is one set of ef-
fort measurements where the current amount of energy used
to hold or move the five servos and two fingers of the arm
are recorded. Finally there is one set of velocity measure-
ments where the current speed of the five servos and two
fingers are recorded. In total, each instance will have 21 data
features that are recorded as floating point values.

Benign Data
When trying to analyze data to detect attacks, there are two
types of data that need to be collected from the system. The
first type of data needed is benign data or data collected un-
der normal operation of the system. To simulate normal op-
eration we programmed the robotic arm to repeatedly per-
form a simple action of picking an object up, moving it, plac-
ing it down, and moving back to a neutral resting position. In
the benign simulation, we made sure to follow the workflow
described in the previous section in order to collect a good
sample of usable data. In total the number of packets cap-
tured is 205, 043 and the total number of physical instances
from the arm is 194, 738.

Malicious Data
The second type of data needed when detecting anomalous
behaviour is the malicious data. For this experiment, the ma-
licious data is generated as a result from performing vari-
ous types of attacks on the system. This experiment only
featured two types of attacks specifically chosen to test the
different capabilities of a cyber-only trained detection sys-
tem, a physical-only trained detection system, and a hybrid
cyber-physical trained detection system. The first type of at-
tack featured in this experiment is a physical attack simu-
lated as a local hijacking attack. This attack was executed
by locally loading and executing a malicious job on the PLC
that would move the arm in unexpected patterns. The attack
bypasses the normal workflow and interrupts the currently
running benign job to run the malicious job. This type of
attack is chosen because it would have the best chance of
going undetected by a cyber-only trained detection system.
The second type of attack featured in this experiment is a
cyber Denial-of-Service (DoS) attack against the monitoring
VM. This DoS attack is a SYN-Flood attack where the HMI
VM is sent a very large number of new connection requests
over the same port that the Rviz HMI is communicating with
the PLC. The flood of new connections slows down or com-
pletely blocks the communication to the PLC, which makes
the Rviz HMI slow and inaccurate. This attack is chosen be-
cause it would be very obvious for any cyber-only trained
detection system but would be virtually impossible to detect
using a physical-only trained detection system. The way that
data is collected for both of these attacks is the same. The
system is booted as per the workflow described. Once the
system is running a benign job, then either of the attacks are
executed, data is collected, and the system is shutdown. In
total there are 40, 205 malicious packets captured (20, 205
from the hijack attack and 20, 000 from the DoS attack) and
22, 098 malicious instances from the arm (3, 228 from the
DOS attack and 18, 870 from the hijack attack). There are



no measures taken in this paper to compensate for the data
imbalance between the benign and malicious datasets.

Data Pre-processing
Both benign and malicious datasets require a substantial
amount of data pre-processing. There are two different sets
of steps taken when dealing with either cyber data or physi-
cal data no matter if the set is malicious or benign. The cyber
datasets are originally stored as PCAP files and once con-
verted to a CSV by Wireshark, each string and non-standard
numerical value needs to be encoded and transformed into
a standard numerical value. The data fields that are encoded
are Source IP, Destination, IP, and the Packet Information
fields. To eliminate any possible unintended and unrelated
connections, the Packet Number and Time data fields are
dropped from the dataset. The physical datasets are origi-
nally stored as normal text files containing each instance in
the form of a packet with header information and the data
itself. In order to convert them into CSV files, the header in-
formation for each instance is removed as well as unneeded
text titles. Once both malicious and benign datasets for both
cyber and physical data are converted into CSV files, they
are all merged into one dataset for their respective source
(cyber or physical) and given a label, zero for benign in-
stances and one for the Dos attack and two for the hijack
attack.

IDS Training
Due to the way the data is collected, there is no logical con-
nection between the physical dataset and the cyber dataset.
This means that classical cyber-physical data fusion could
not be achieved. To still achieve the effect of cyber-physical
data fusion, we use an ensemble learner of learners that are
trained on the cyber and physical data separately. The en-
semble learner consists of the K-Nearest Neighbors (KNN)
and Decision Tree (DT) models. K-Nearest Neighbors is the
first machine learning model chosen because of its natural
logical connection to position data of the robotic arm. Deci-
sion Tree is the second machine learning model chosen be-
cause it is able to make better connections with the diverse
feature space of the cyber data.

There are three stages of training for this experiment.
First, both of the machine learning models are trained using
the physical data and cyber data separately using an 80/20
split for training and testing. Then, the models are tested
using their testing sets and the predicted values as well as
the actual values for each instance are saved. Finally, an en-
semble learner using KNN and DT models is trained and
tested on a combined dataset of the predicted and actual val-
ues saved from both cyber and physical model testing. Be-
cause there is an imbalance between the size of the datasets,
each instance of predicted and actual values in the physi-
cal dataset is used and it is combined with a randomly se-
lected instance in the cyber dataset that shares the same ac-
tual value to form the cyber-physical dataset. Each instance
of the cyber-physical dataset will have five features: the pre-
dicted values from the KNN and DT models trained on both
cyber data and physical data, and the actual value.

Results and Discussion
The results of this experiment can be broken down into three
parts, the performance of the cyber only IDS, the perfor-
mance of the physical only IDS, and the performance of the
cyber-physical IDS. The average accuracy, precision, recall,
and F1 score for all three IDSs can be seen in Table I.

Table 1: Summary of average detection results

Accuracy Precision Recall F1 Score
Cyber-Physical 97.2% 98.4% 94.2% 96.1%

Cyber Only 97.5% 98.5% 90.1% 94.6%
Physical Only 97.9% 78.3% 69.95% 71.1%

As shown in Table I, the accuracy is fairly close be-
tween the three IDSs, and the main difference when compar-
ing the three IDSs is in the precision, recall, and F1 score.
When comparing the cyber-physical IDS to the cyber only
IDS, we can see that they perform the roughly the same or
the cyber-physical IDS performs a couple percentages bet-
ter than the cyber only IDS. However when comparing the
cyber-physical IDS to the physical only IDS we can see that
there is a significant improvement in all three stats when us-
ing the cyber-physical IDS rather than the physical only IDS.
When we compare the cyber only IDS to the physical only
IDS we can see the the cyber only IDS out performs the
physical only IDS in precision, recall, and F1 score.

There are two reasons for this significant performance dif-
ference. The first is the amount of data in the respective
datasets. The cyber dataset had significantly more instances
than the physical dataset because the rate of data collection
for the physical data is slower than the amount of traffic
that traveled across the network. The second reason for the
performance difference is the contamination of cyber data
with physical data. This contamination occurs because all
the physical data is remotely collected, so this data is con-
tained in network packets that Wireshark collected and the
cyber-only IDS trained on. Because the IDS was able to see
the physical data it is then able to able to detect attacks which
otherwise would have been invisible.

Conclusion
The introduction of cyber-physical systems in our manufac-
turing process has provided a boost in both the efficiency
and safety of the industry. The major drawback of this ad-
vancement is that it increases the attack surface for the sys-
tem opening it up to more possible attacks that may cause
harm to both infrastructure and people. The research of this
problem has only been considering either cyber or physical
data when training their intrusion detection systems, which
leaves them blind to possible attacks in the other part of the
system. This paper developed a cyber-physical testbed, at-
tacked it using attacks that would manifest in either the cy-
ber or physical space but not both, and developed a hybrid
cyber-physical intrusion detection system that maintained
accuracy and improved precision, recall, and F1 score com-
pared to the classical intrusion detection systems.
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