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Abstract 

“Matching” procedures in statistics involve construction of 
datasets with similar covariates between compared groups. 
Matching has recently been proposed as a means of address-
ing fairness impossibility (i.e. inconsistency of fairness met-
rics) in AI and ML systems: Beigang argues on conceptual 
grounds that, when matched rather than unmatched datasets 
are analyzed, the tradeoff between the fairness metrics 
equalized odds (EO) and positive predictive value (PPV) 
will be reduced. Here we evaluate matching as a practical 
rather than merely conceptual approach to reducing fairness 
impossibility. As a case study we conduct pre-match and 
post-match analyses on the well-known COMPAS dataset 
from Broward Co., Florida, 2013-2014. We then reflect on 
what these results suggest about effects of matching on (a) 
accuracy estimates, (b) fairness estimates, and (c) difference 
between fairness estimates – that is, the extent to which 
matching reduces “fairness impossibility” in practice. We 
conclude that matching is a promising tool for improving 
evaluations on all three fronts, but faces problems due to po-
tential biases introduced by matching procedures them-
selves, as well as limited power under conditions extremely 
common to ML evaluation contexts such as non-
independent variables and relevance of hidden variables.  

 Introduction   

“Matching” procedures in statistics involve construction of 

datasets with similar covariates between compared groups 

(Stuart 2010). Matching has recently been proposed as a 

means of addressing the well-known problem of “fairness 

impossibility” (i.e. inconsistency of fairness metrics, as 

demonstrated in Kleinberg et al. 2016 and Choudrechova 

2017) in AI and ML systems. In particular, Beigang (2023) 

argues on conceptual grounds that, when matched rather 

than unmatched datasets are analyzed, the tradeoff between 

the fairness metrics equalized odds (EO) and positive pre-

dictive value (PPV) will be reduced. Since the EO-PPV 
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tradeoff is perhaps the central example of a “fairness im-

possibility result” (Kleinberg et al. 2016; Chouldechova 

2017), this proposal stands to fundamentally alter the un-

derstanding of fairness impossibility and its implications.   

  Here we attempt to evaluate matching as a practical ra-

ther than merely conceptual approach to reducing fairness 

impossibility. This is important and potentially fruitful 

insofar as it stands to estimate the extent to which, in real 

contexts of application, matching enables (a) more precise 

measurement of the accuracy of a classifier, (b) more pre-

cise measurements of the fairness of a classifier, and (c) 

can reduce the difference between different fairness metrics 

(in particular, equalized odds [EO] and positive predictive 

value [PPV]) – that is, the extent to which it solves the 

“fairness impossibility” problem, allowing EO or PPV to 

serve as equivalent and mutually substitutable measure-

ments of fairness. 

   Methodologically, we approach the problem in three 

main steps. First, we use several simple matching proce-

dures (for review of matching methods in general, see Stu-

art 2010) to build matched datasets for a well-known ex-

ample in the fairness literature, the COMPAS dataset from 

Brouward Co., Florida, 2013-2014 (Larson et al. 2016). 

Second, we analyze the original unmatched data set and the 

matched data sets for their accuracy and fairness perfor-

mance. Third, we reflect on and discuss the extent to which 

the matched results suggest improvements on items (a), 

(b), and (c), keeping in mind the practical challenges we 

faced in performing the procedures.  

Accuracy, Fairness, and Fairness  

Impossibility  

We want AI and ML systems to be both accurate and fair. 

To facilitate these goals, a variety of quantitative measures 

of accuracy and fairness have been proposed (for over-

views, see Fraenkel 2020; Barocas et al. 2023; Kearns & 

Roth 2019). Some common measures or “metrics” for ac-
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curacy include the four squares of the classical statistical 

confusion matrix – true positive rate (TPR), false positive 

rate (FPR), true negative rate (TNR), and false negative 

rate (FNR) – as well as positive predictive value (PPV) and 

negative predictive value (NPV). The first four of these 

metrics track accuracy in the sense of the percentage of 

actual values that are correctly or incorrectly predicted. 

The last two measures track accuracy in the sense of the 

percentage of predictions that turn out to be correct or in-

correct (i.e. turn out to match actual values).  

  Common measures of fairness tend to depend on accura-

cy metrics insofar as they highlight differences in accuracy 

estimates when compared across groups. For instance, the 

COMPAS recidivism prediction algorithm was argued by 

Larson et al. (2016) to be unfair because it exhibited higher 

FPR for African-American individuals than for Cauca-

sians, as well as higher FNR for Caucasians than African-

Americans. These measures are known as false positive 

parity (FPP) and false negative parity (FNP) respectively. 

However, different fairness metrics can sometimes give 

different estimates of the extent, or even the presence or 

absence, of unfairness. As representatives of the COMPAS 

algorithm argued in defense, for instance, COMPAS satis-

fies PPV approximately equally well between African-

American and Caucasian groups (Dietrich et al. 2016).  

 Indeed, mathematical arguments in the wake of the 

COMPAS controversy appeared to show that, under condi-

tions of imperfect knowledge and different base rates be-

tween compared groups, no model can simultaneously 

achieve perfect FPP, FNP, and PPVP (Kleinberg et al. 

2016; Chouldechova 2017). As these two conditions char-

acterize the vast majority of circumstances in which AI-

powered decision- and prediction-assistive systems like 

COMPAS are employed or would ever be employed, this 

result was a bombshell for researchers on algorithmic fair-

ness. The result, known in subsequent discussion as “fair-

ness impossibility,” has inspired many efforts at ameliora-

tion (e.g. Saleiro et al. 2020; Bell et al. 2023; DeFrance 

2023), but has no generally accepted solution.  

   In 2023, a novel interpretation of fairness impossibility 

was proposed by Beigang (2023), who argued on theoreti-

cal grounds that under the assumed ideal condition of per-

fectly statistically matched comparison groups, the differ-

ence between (on the one hand) the aggregate difference in 

FPR and FNR (also known as “equalized odds”) and (on 

the other) the difference in PPV, should reduce to 0. In 

short, any system that is truly unfair would fail both met-

rics to the same extent, and any system that is truly fair 

would satisfy both equally. 

 Beigang’s proposal was intended as a theoretical untan-

gling of the fairness incompatibility problem. The novelty 

and promise of Beigang’s proposal, however, inspired us to 

ask the question, “How well could statistical matching set- 

 

       Table 1. Common accuracy metrics 

 
Abbv. Full name Meaning 

TP True positives Cases where model’s positive prediction is accu-

rate 

FP False negatives Cases where model’s positive prediction is inac-

curate 

TN True negatives Cases where model’s negative prediction is 

accurate 

FN False negatives Cases where model’s negative prediction is 

inaccurate 

TPR True positive rate Ratio of true positives to actual positive cases 

FPR False positive rate Ratio of false positives to actual negative cases 

TNR True negative rate Ratio of true negatives to actual negative cases 

FNR False negative 

rate 

Ratio of false negatives to actual positive cases 

PPV Positive predic-

tive value 

Ratio of true positives to total positive predictions 

of the model 

NPV Negative predic-

tive value 

Ratio of true negatives to total negative predic-

tions of the model 

 

              Table 2. Common fairness metrics 

 
Abbv. Full name Meaning 

DP Demographic parity Difference in % of each group predicted posi-

tive 

TPP True positive parity Difference in TPR between groups 

FPP False positive parity Difference in FPR between groups 

TNP True negative parity Difference in TNR between groups 

FNP False negative parity Difference in FNR between groups 

EO Equalized odds Difference in TPP and FPP between groups 

PPVP PPV parity Difference in PPV between groups 

 

 

tle worries about fairness impossibility in practice?” and, 

more generally, “How could statistical matching contribute 

to evaluations of accuracy and fairness?” 

Statistical Matching  

Statistical matching procedures were first developed to 

solve a problem faced by observational studies: namely, 

that the regularized conditions of controlled studies (for 

instance, randomized controlled trials) are usually not 

available in observational studies, and the reliability of 

results drawn from observational data are thereby reduced 

(Stuart 2010). Statistical matching procedures aim to solve 

this problem by artificially transforming observational da-

tasets to mimic those of controlled experiments. Typically 

they involve splitting observational data into “treatment” 

and “control” groups and then employing procedures to 

make co-variates (that is, non-treatment and non-outcome 

variables) more similar, in aggregate, between the groups, 

thereby mimicking bias-mitigated formation of treatment 

and control groups in randomized controlled trials. Statisti-

cal matching is similar to techniques for correcting class 

imbalance, such as undersampling, oversampling, and 

SMOTE (Chawla et al. 2002; Wongvorachan et al. 2023) 

in its ambition to make observational data more like exper-

imental data, but is directed at a different aspect of the 



problem: imbalance in covariates between classes, rather 

than imbalance in number of instances in each class.  

  Statistical matching usually comprises three main steps 

(Stuart 2010): (1) selection of a matching procedure and 

application of this procedure to the original (unmatched) 

dataset; (2) analysis of the resulting matched dataset for 

“balance” (that is, the extent to which total distribution of 

co-variates is the same or different between the groups, as 

well as between the original unmatched dataset and the 

new matched one, with greater similarity, i.e. “balance,” 

preferred, as this indicates greater reliability in post-match 

analyses); and (3) analysis of the resulting matched dataset 

for the variables of interest (i.e. link between treatment and 

outcome variables).   

  Common matching procedures include exact matching, 

k:1 nearest neighbor matching, and matching with use of 

propensity scores (Stuart 2010). An important decision that 

must be made is whether matching will be done with or 

without replacement – that is, whether duplicate records 

will be generated in the treatment group or control group as 

a means of creating the desired parallel between groups. In 

cases where replacement is used, attention should be given 

to how replacement may affect subsequent analyses (for 

instance, as a source of bias in results). 

  Regarding balance: a similar distribution of covariates 

between groups, as well as between matched and un-

matched datasets, is desirable, but there is no standard 

threshold for acceptable similarity, nor any standard 

posthoc methods to ensure or improve balance where it is 

lacking (Austin 2009, Stuart 2010). Stuart (2010) recom-

mends checking for balance and then, if balance levels are 

found insufficient, revising the match procedure to try to 

create a more balanced dataset, then running the match 

operation and balance checks again, and so on. 

  In general, we believe it is recommendable to bear in 

mind potential tradeoffs in use of matching procedures. 

Matching is a way to make observational data more like 

experimental data. It promises to improve the power and 

precision of observational studies. At the same time, it al-

ways involves some transformation of observational da-

tasets from their original form and thereby risks introduc-

ing new biases into results. Matching procedures are not a 

substitute for careful and self-critical exploration of the 

implications of observational datasets, but rather one tool 

for such careful and self-critical exploration.  

Methods  

Our aim was to explore how statistical matching could 

contribute to the evaluation of real AI-ML systems for ac-

curacy, fairness, and inconsistency of fairness metrics (i.e. 

“fairness impossibility”). As a case study for exploring 

these questions, we selected the well-known COMPAS 

dataset (Larson et al. 2016) composed of COMPAS recidi-

vism predictions for arrests in Broward County, Florida, 

2013-2014, and associated data about actual recidivism 

rates within a 2-year period. In addition to the original un-

matched dataset, we constructed nine alternative datasets, 

some matched and some unmatched (construction proce-

dures detailed in Table 3). We then tested each dataset for 

co-variate balance (results in Table 4) and analyzed each 

for accuracy, fairness, and fairness impossibility (results in 

Table 6 and Figures 1-2). All procedures were performed 

in MySQL and Excel.  

Results and Discussion 

Several features of the results are noteworthy. First, match-

ing procedures tended to reduce estimates of unfairness, as 

evidenced by the following inequalities among datasets in 

Figure 1: d<(a∨c), e<(a∨c), g<(a∨f).  

  At the same time, signatures of unfairness are preserved 

in roughly the same pattern as the original (unmatched) 

datasets. The greater FPR for African-Americans, and 

greater TNR for Caucasians, noted in the original ProPub-

lica analysis as well as our (a), appeared in all datasets, 

matched or unmatched. In other words, the original signa-

ture of unfairness of these kinds survived the matching. 

The combination of these trends suggests that while analy-

sis of the original, unmatched dataset may have resulted in 

unduly high estimates of FPR and FNR unfairness, our 

confidence that the COMPAS system is unfair by the 

standards of FPP, TNP, and EO should be strengthened. In 

this case, post-match analyses have contributed robustness 

to the conclusion that the COMPAS system is unfair by the 

standards of FPP, TNP, and EO.  

  Further, matching tended to reduce the difference be-

tween fairness metrics, particularly EO and PPV, suggest-

ing that matching can reduce fairness impossibility in prac-

tice. This is evidenced by lesser EO-PPVP difference in 

matched datasets by comparison with unmatched ones 

(Table 6). On the other hand, that h>a both for raw fairness 

metrics and EO-PPVP difference may signify greater un-

fairness, in COMPAS’s performance, regarding drug-

related charges.  

   A lingering worry is whether and how matching proce-

dures may introduce new biases. One indicator of bias in 

matching procedures is imbalance in either of two senses: 

dissimilar covariate distribution between “treatment” and 

“control” within matched subgroups; and dissimilar co-

variate distribution between the original (unmatched) and 

constructed (matched) groups.   

  Regarding the first kind of balance: only to the extent 

that matched groups within a matched dataset (in our re-

search design, African-American and Caucasian) are simi-

lar in covariate distribution, can we think of the matched 



                Table 3. Construction procedures for datasets 

Name of dataset 

 

No. of 

Records  

Construction procedure 

 

Total (unmatched) 

 

8732 

 

Download from ProPublica Github, “compass-violent-parsed-filt.” Remove duplicate records. Remove records where “is_recid” (i.e. record of 

recidivism) is not 0 or 1. Remove records where “race” is not “Caucasian” or “African-American.” 

Random (unmatched) 

 

1670 

 

Randomly select 835 records from Total (unmatched) where race=’Caucasian’ and 835 records from Total (unmatched) where race =”African-

American”  

“battery” (unmatched) 1366 Select from Total (unmatched) all records where “c_charge_description” equals “battery.” 

"battery"  

(matched by addition) 

 

1680 

 

 

Select all records from “battery” (unmatched). Calculate differences in between-group representation of 18 subgroups defined by all possible 

combinations of sex, age category, and prior category (0, 1, or >1). Equalize between-group representation in each subgroup by adding randomly 

selected records with the subgroup’s defining characteristics from the originally underrepresented group.  

"battery"  

(matched by subtraction) 

 

1052 

 

 

Select all records from “battery” (unmatched). Calculate differences in between-group representation of 18 subgroups defined by all possible 

combinations of sex, age category, and prior category (0, 1, or >1). Equalize between-group representation by deleting randomly selected records 

with the subgroup’s defining characteristics from the originally overrepresented group. 

theft-related (unmatched) 

 

1105 

 

Copy from Total (unmatched) all cases where “c_charge_description” equals a theft-related charge, except cases with <10 records for that 

charge. 

theft-related  

(matched by addition) 

 

1458 

 

 

Copy all records from Theft-related (unmatched). Calculate differences in between-group representation of 18 subgroups defined by all possible 

combinations of sex, age category, and prior category (0, 1, or >1). Equalize between-group representation in each subgroup by adding randomly 

selected records with the subgroup’s defining characteristics from the originally underrepresented group. 

drug-related (unmatched) 1842 Copy from Total (unmatched) all cases where “c_charge_description” equals a drug-related charge. 

Random (matched) 

 

 

2000 

 

 

Randomly select pairs of records from Total (unmatched) where race=’Caucasian’ in one of each pair, and race=”African-American” in the other 

of each pair; and sex, age, number of prior convictions, and charge description are identical between the paired records. Selection occurs with 

replacement; some records are duplicated up to 7 times. 

Random  

(matched in categories) 

 

2000 

 

 

Randomly select pairs of records from Total (unmatched) where race=’Caucasian’ in one of each pair, and race=”African-American” in the other 

of each pair; and sex, age category (<25, 25-45, or >45), priors category (0, 1, >1), and charge description are identical between the paired 

records. Selection occurs with replacement; some records are duplicated up to 10 times. 
 

 

 

 

 

            Table 4. Covariate ratios for each dataset 

 
   Sex Age Priors 

  Total Male Female <25 25-45 >45 0 1 >1 

Total (unmat.) 

 

 

Total 100.0% 79.0% 21.0% 21.0% 57.0% 22.0% 29.4% 19.4% 51.2% 

Cauc. 41.0% 75.9% 24.1% 15.6% 54.2% 30.3% 35.9% 20.6% 43.5% 

AA 59.0% 81.1% 18.9% 24.8% 58.9% 16.3% 24.9% 18.6% 56.6% 

Random 

(unmat.) 

 

Total 100.0% 78.9% 21.1% 20.2% 56.0% 23.8% 30.8% 19.0% 50.2% 

Cauc. 50.0% 74.5% 25.5% 15.6% 53.7% 30.8% 37.8% 20.8% 41.3% 

AA 50.0% 83.2% 16.8% 24.8% 58.4% 16.8% 23.7% 17.1% 59.2% 

Battery 

(unmat.) 

 

Total 100.0% 72.0% 28.0% 19.5% 58.2% 22.3% 48.0% 19.4% 32.6% 

Cauc. 47.7% 70.7% 29.3% 16.0% 52.1% 31.9% 52.9% 19.6% 27.5% 

AA 52.3% 73.1% 26.9% 22.7% 63.7% 13.6% 43.6% 19.2% 37.3% 

Battery (mat.  

by add.) 

 

Total 100.0% 72.6% 27.4% 19.3% 55.7% 25.0% 46.7% 20.5% 32.9% 

Cauc. 50.0% 72.6% 27.4% 19.3% 55.7% 25.0% 46.7% 20.5% 32.9% 

AA 50.0% 72.6% 27.4% 19.3% 55.7% 25.0% 46.7% 20.5% 32.9% 

Battery (mat. 

by sub.) 

 

Total 100.0% 70.9% 29.1% 19.8% 62.2% 18.1% 50.2% 17.7% 32.1% 

Cauc. 50.0% 70.9% 29.1% 19.8% 62.2% 18.1% 50.2% 17.7% 32.1% 

AA 50.0% 70.9% 29.1% 19.8% 62.2% 18.1% 50.2% 17.7% 32.1% 

Theft-rel. 

(unmat.) 

 

Total 100.0% 77.4% 22.6% 37.4% 44.9% 17.7% 32.9% 20.1% 47.1% 

Cauc. 35.7% 78.0% 22.0% 24.6% 52.4% 23.0% 34.4% 21.3% 44.3% 

AA 64.3% 77.0% 23.0% 44.5% 40.7% 14.8% 32.0% 19.4% 48.6% 

Theft-rel. (mat. 

by add.) 

 

Total 100.0% 77.7% 22.3% 43.1% 40.2% 16.8% 33.1% 19.9% 47.0% 

Cauc. 50.0% 77.7% 22.3% 43.1% 40.2% 16.8% 33.1% 19.9% 47.0% 

AA 50.0% 77.7% 22.3% 43.1% 40.2% 16.8% 33.1% 19.9% 47.0% 

Drug-rel. 

(unmat.) 

 

Total 100.0% 80.9% 19.1% 18.7% 56.9% 24.4% 31.5% 16.6% 51.8% 

Cauc. 49.2% 74.4% 25.6% 16.2% 56.2% 27.6% 40.8% 18.6% 40.6% 

AA 50.8% 87.3% 12.7% 21.1% 57.6% 21.3% 22.6% 14.7% 62.8% 

Random (mat.) 

 

 

Total 100.0% 84.7% 15.3% 38.1% 54.1% 7.8% 51.4% 29.0% 19.6% 

Cauc. 50.0% 84.7% 15.3% 38.1% 54.1% 7.8% 51.4% 29.0% 19.6% 

AA 50.0% 84.7% 15.3% 38.1% 54.1% 7.8% 51.4% 29.0% 19.6% 

Random (mat. 

in cat.) 

 

Total 100.0% 93.4% 6.6% 6.6% 79.8% 13.6% 15.8% 8.9% 75.3% 

Cauc. 50.0% 93.4% 6.6% 6.6% 79.8% 13.6% 15.8% 8.9% 75.3% 

AA 50.0% 93.4% 6.6% 6.6% 79.8% 13.6% 15.8% 8.9% 75.3% 
 

    Table 5. Formulae for metrics 
 

 Pr = Records w/ risk score ≥ 5 

 Pn = Records w/ risk score <5 

 Ar = Records that recidivized 

 An = Records that did not recidivize 

TP = Pr  ∩ Ar TN = Pn ∩ An 

FP = Pr ∩ An FN = Pn ∩ Ar 

TPR =
TP

Ar
 TNR =  

TN

An
 

FPR =  
FP

An
 FNR =  

FN

Ar
 

PPV =  
TP

Pr
 NPV =  

TN

Pn
 

Ra = Records w/  

        race= “African-American” 

Rc = Records w/ race=“Caucasian” 

FPR(Af. −Am. ) =  
FP ⋂ Ra

An ⋂ Ra
 

FNR(Cauc. ) =  
FN ⋂ Rc

Ar ⋂ Rc
 

PPV(w-avg) = 

(
TP ⋂ Ra

Pr ⋂ Ra
) ∗

Ra

Ra +  Rc

+  (
TP ⋂ Rc

Pr ⋂ Rc
) ∗

Rc

Ra +  Rc
 

DP = |
(Pr ⋂ Ra)

(Ra)
−  

(Pr ⋂ Rc)

(Rc)
| 

        TPP = TPR(Rc) − TPR(Ra) 

        FPP = FPR(Ra) − FPR(Rc) 

        TNP = TNR(Rc) − TNR(Ra) 

        FNP = FNP(Rc) − FNP(Ra) 

        EO = TPP + FPP 

        PPVP = PPV(Rc) − PPV(Ra) 

        EO-PPVP = EO – PPVP 
 

                                                       

              

               Table 6. Accuracy and fairness results across datasets 

 Accuracy Fairness Fairness Impossibility 

 FPR(Af-Am.)  FNR(Cauc.)  PPV(w-avg) DP FPP FNP EO PPVP EO-PPVP 

(a) total (unmat.) 0.4881 0.4903 0.4664 0.2409 0.2237 0.1996 0.4234 0.0506 0.3727 

(b) random (unmat.) 0.4795 0.5169 0.4673 0.2719 0.2391 0.2592 0.4983 0.0509 0.4474 

(c) battery (unmat.) 0.3132 0.6233 0.4593 0.2023 0.1610 0.1970 0.3580 0.0816 0.2764 

(d) battery (mat. by add.) 0.2916 0.6048 0.4460 0.1488 0.1106 0.1350 0.2873 0.0796 0.2077 

(e) battery (mat. by sub.) 0.2893 0.5814 0.4546 0.1369 0.1105 0.1343 0.2448 0.0452 0.1997 

(f) theft-rel. (unmat.) 0.5855 0.3797 0.4725 0.1508 0.1635 0.1324 0.2959 0.0349 0.2610 

(g) theft-rel. (mat. by add.) 0.5861 0.3322 0.4694 0.0831 0.0931 0.0779 0.1710 0.0396 0.1314 

(h) drug-rel. (unmat.) 0.5697 0.4805 0.4735 0.2995 0.2779 0.2357 0.5135 0.1217 0.3919 

(i) random (mat.) 0.3451 0.4684 0.4006 0.0910 0.0843 0.0554 0.1397 0.0258 0.1139 

(j) random (mat. in cat.) 0.4827 0.3968 0.4730 0.1620 0.1250 0.1704 0.2954 0.0724 0.2230 



Figure 1. Fairness results for each dataset  

 

 

     Figure 2. Accuracy results for each dataset  
 

 

 

            Figure 3. Sex ratio between datasets 
 

 
  

                     

 

 

 

        Figure 4. Age ratio between datasets 
 

 

 

 

 

        Figure 5. Priors count ratio between datasets  
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dataset as like a randomized controlled trial where “treat-

ment” and “control” are selected to be similar across rele-

vant covariates. All our matched datasets are “balanced” in 

this sense (Table 4). (Incidentally, this is one benefit of 

“exact” matching procedures in comparison with others, 

such as propensity scores).  

  Regarding the second sort of balance: When the distribu-

tion of covariates between matched datasets and the origi-

nal, unmatched dataset are very different, that difference 

suggests that the construction procedure has introduced 

biases that affect post-match analyses (Stuart 2010): for 

instance, by leaving out individuals from either group for 

whom no exact co-variate match could be found; or by 

duplicating records from one group to achieve balance with 

the other. In general, construction procedure can introduce 

bias by changing the extent to which individuals with dif-

ferent covariate signatures are “counted” towards estimates 

of overall accuracy and fairness.  

   Figures 3-5 summarize tests for balance in the second 

sense (drawn from data in Table 4). As can be seen, co-

variate distribution is relevantly similar across a, b, c, d, e, 

f, g, and h. The difference between the subsets {a, b}, {c, 

d, e}, and {f, g} can be explained by the restriction to dif-

ferent charge types in the three subsets. However, the co-

variate distributions in {i, j} are clear outliers. In our inter-

pretation, these differences in covariate distribution signal 

strong biases introduced by the construction procedures, 

and the datasets are so dissimilar to the unmatched dataset 

as to recommend against use.  

   Another concern is hidden confounding variables. Our 

model only tracks the link between the considered covari-

ates and COMPAS’s accuracy; other covariates that plau-

sibly make a difference to that accuracy and fairness are 

not tracked. For instance, suppose that racial profiling by 

police increased likelihood of recidivism among African-

Americans in this dataset – that is, that AAs in this datatset 

recidivized at higher base rates not because they committed 

more crimes, but because they were more frequently ar-

rested and charged. That this difference contributes to dif-

ferential accuracy of COMPAS is another source of unfair-

ness, but not one that our model discerns or measures. (The 

same is true of the original ProPublica analysis.) Similarly, 

where the treatment variable (here “race”) is correlated to 

hidden variables that are not included in the model, but 

plausibly have causal influence on recidivism – such as 

socio-economic status (SES) – then estimates of accuracy 

and unfairness may be distorted. For instance, if SES is a 

causal contributor to recidivism rates, and SES is correlat-

ed to race, then the matched datasets constructed here can-

not decide whether the unfairness is due to discrimination 

by race, or rather by SES.  

   Yet another concern is non-independent variables. Our 

model treats the covariates age, sex, priors count, charge, 

and race as causally independent of one another. But sup-

pose that race, via the influence of racial profiling, makes a 

difference to how likely an individual is to have been 

charged previously (priors count), or the type of charge 

brought against them (charge description). Then analyses 

on matched groups will underestimate the extent of unfair-

ness in the systems in question, since the lower fairness 

scores when matching on priors fails to consider unfairly 

different pathways that lead to different prior counts in the 

two groups. (For some insight on hidden and non-

independent variables and the difficulty of estimating their 

influence, see Wang et al. 2023 and Tolbert 2024.) 

Conclusions 

Regarding our motivating questions, our results suggest the 

following: 

  (1) Matching tends to reduce estimates of unfairness. 

The reasons for this reduction are unclear; two possible 

sources are (a) increased precision due to greater covariate 

balance and (b) increased bias due to matching procedure.  

 (2) Matching tends to reduce the difference between 

some fairness metrics (e.g. EO and PPVP), thereby partly 

resolving the problem of fairness impossibility in practice. 

 (3) Matching can contribute robustness to the conclusion 

that a system exhibits unfairness, and (to some extent) the 

type, pattern, and extent of this unfairness.  

  (4) Matching can introduce new biases, and its power is 

limited when hidden and non-independent variables are 

possible and (especially) likely.  

  The authors thank Olusola Olabanjo, Gabriella Waters, 

and three anonymous reviewers for comments on the man-

uscript. 
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