
Enhancing Time-Series Prediction with Temporal Context Modeling: A Bayesian
and Deep Learning Synergy

Habib Irani, Vangelis Metsis
Computer Science Department, Texas State University

San Marcos, TX 78666, USA
habibirani@txstate.edu, vmetsis@txstate.edu

Abstract

In time-series classification, conventional deep learning
methods often treat continuous signals as discrete win-
dows, each analyzed independently without consider-
ing the contextual information from adjacent windows.
This study introduces a novel, lightweight Bayesian
meta-classification approach designed to enhance pre-
diction accuracy by integrating contextual label infor-
mation from neighboring windows. Alongside train-
ing a deep learning model, we construct a Conditional
Probability Table (CPT) during training to capture label
transitions. During inference, these CPTs are utilized
to adjust the predicted class probabilities of each win-
dow, taking into account the predictions of preceding
windows. Our experimental analysis, focused on Hu-
man Activity Recognition (HAR) time series datasets,
demonstrates that this approach not only surpasses the
baseline performance of standalone deep learning mod-
els but also outperforms contemporary state-of-the-art
methods that integrate temporal context into time series
prediction.
Keywords—Time Series Classification, Deep Learning,
Bayesian Methods, Temporal Context

1 Introduction
Time-series prediction encompasses a spectrum of machine
learning tasks, with applications spanning diverse fields such
as healthcare, finance, and speech recognition. Within this
domain, time-series classification focuses on predicting la-
bels associated with specific segments of time-series data,
while time-series forecasting aims to predict future values
within the series itself. Our work concentrates on the chal-
lenges and advancements within the context of time-series
classification.

Traditional machine learning methods, including logis-
tic regression and support vector machines, have demon-
strated their utility in time-series classification tasks (de
Mattos Neto et al. 2020; Abanda, Mori, and Lozano 2019;
Bagnall et al. 2017; Botsch 2023; Kirichenko, Radivilova,
and Bulakh 2018). However, these approaches often strug-
gle to explicitly model the intricate temporal dependencies
and contextual nuances inherent in time-series data. The
Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

rise of deep learning algorithms, such as Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
and Transformers, has ushered in a new era of powerful
tools for time-series classification (Ismail Fawaz et al. 2019;
Alzubaidi et al. 2021). These deep learning architectures ex-
cel at recognizing temporal patterns from raw data, leading
to significant advancements in the field.

The prevalent approach for time series classifications in-
volves segmenting the continuous data stream into windows
of fixed or variable length. Each window is assigned one
or more labels, and the model learns the relationship be-
tween temporal patterns within the window and the corre-
sponding label. Figure 1 illustrates this process. Deep learn-
ing models effectively capture temporal patterns within each
window, but current architectures often overlook the broader
context beyond the current window. This limitation can hin-
der performance, particularly when long-term dependencies
and trends play a crucial role in accurate classification.

Researchers have explored hybrid deep learning ap-
proaches to address this challenge, aiming to capture both
short and long-term patterns. LSTNet (Lai et al. 2018),
for instance, employs a two-layer architecture with a CNN-
based backbone for modeling individual windows and an
LSTM with temporal attention to model behavior across
multiple windows. However, modeling longer time horizons
with increasingly complex temporal patterns often necessi-
tates larger models and extensive training data, raising con-
cerns about computational efficiency and resource require-
ments.

Our research builds upon the foundations laid by previ-
ous contributions, including (Wang, Yan, and Oates 2017;
Khan et al. 2021; Zhang, Zhu, and Zhang 2020), who have
made significant strides in leveraging deep learning for intri-
cate temporal pattern recognition and representation learn-
ing. We also acknowledge the contributions of (Lai et al.
2018) in addressing the challenge of modeling long-term de-
pendencies. However, we recognize the need for methods
that balance effectiveness with efficiency and interpretabil-
ity.

In contrast to complex hybrid deep learning models, we
propose a lightweight Bayesian approach for long-term tem-
poral context modeling1. Instead of directly analyzing data

1
https://github.com/imics-lab/TemporalContext-BayesDL

Figure 1: For training and inference, time series are segmented
into (potentially overlapping) windows, and a label is assigned to
each window.

from past windows, we focus on the labels of those win-
dows. By modeling transition probabilities between labels
of neighboring windows and integrating this information
with deep learning-based predictions for each window, we
aim to improve prediction accuracy while maintaining effi-
ciency. We employ Conditional Probability Tables (CPTs)
to represent the conditional probabilities of transitioning be-
tween different class labels for each window. At inference
time, considering the sequence of previous labels through
CPTs provides a nuanced understanding of inter-window de-
pendencies, refining initial deep learning-based classifica-
tions.

This Bayesian integration enhances adaptability to the dy-
namic nature of time-series datasets, resulting in improved
accuracy and more robust classification results. For exam-
ple, in human activity recognition (HAR), if consecutive
windows are labeled as ”running,” the subsequent window is
more likely to share the same label than transition to ”walk-
ing downstairs.” Our Bayesian approach mitigates the im-
pact of potential misclassifications arising from data artifacts
by incorporating contextual information.

In the following sections, we delve deeper into the ratio-
nale and algorithmic formulation of our proposed method.
We then compare its performance against contemporary
deep learning-based time series classification architectures,
including LSTNet, to demonstrate its effectiveness and effi-
ciency.

2 Methodology
This section introduces our proposed approach, commenc-
ing with a definition of the problem to guide the subsequent
methodological steps. We explain the data processing steps,
starting from the initial time series segmentation into win-
dows to building the CPTs at training time and then using
them to refine the label predictions at inference time.

2.1 Problem Definition
The task at hand revolves around augmenting the accu-
racy of classification through the adept utilization of tem-
poral dependencies. The dataset under consideration, de-
noted as {X1,X2, . . . ,XM}, comprises sequential obser-
vations wherein each data window, represented by Xi (2D
matrix of dimensions (timesteps × channels)), is associ-
ated with a corresponding class label yi, represented here

as a one-hot-encoded vector. Our primary objective is to
employ a Bayesian framework alongside Conditional Prob-
ability Tables (CPTs) to effectively model the conditional
probabilities of class transitions. Specifically, we seek to
ascertain the likelihood of observing a particular class la-
bel yi given the sequence of preceding labels, denoted as
yi−1,yi−2, . . . ,yi−k. The overarching goal is to bridge
the gap between existing methodologies and the intricate
long-term temporal interrelations inherent within sequential
data, thereby refining classification outcomes by integrating
a comprehensive temporal context.

The problem is formally defined as follows: Given the
time-series dataset, we aim to model the conditional prob-
abilities of class transitions using a Bayesian approach and
Conditional Probability Tables (CPTs):

P (yi|yi−1,yi−2, . . . ,yi−k)

This involves estimating the probability of the current label
yi given the sequence of previous labels. This probability
prediction is then used to refine the class probabilities pre-
dicted for the current window by the deep learning model.
We should note that although a convolutional neural network
(CNN) was used here as the backbone of the deep learning
model, our method is independent of the deep learning ar-
chitecture and any other architecture can be used.

2.2 Proposed Method
As depicted in Fig. 2, our methodology for enhancing time-
series classification accuracy integrates a structured work-
flow. The time-series dataset undergoes standard prepro-
cessing, with data segmented into windows and labeled ac-
cordingly. During the training phase, a deep learning model
is trained on each window to learn the mapping between data
Xi and labels yi. At the same time, the Conditional Prob-
ability Tables (CPTs) are built. In the inference phase, the
deep learning model classifies test windows, returning class
prediction probabilities for each window ŷi, as is common
in time series classification. In parallel, our Bayesian model
predicts class probabilities ŷ′

i for the same window based on
the values of the previous k labels in the sequence of win-
dows, where k is a hyperparameter specifying how many
windows in the past the model should consider. Eventually,
ŷi and ŷ′

t are combined into a final prediction. Each step of
this process is explained in detail in the following subsec-
tions.

Data Preprocessing: Segmenting continuous time series
data into windows of fixed size is a fundamental prepro-
cessing step for training deep learning models, especially for
classification tasks. Given a continuous time series {xt}Tt=1,
where xt denotes the value at time step t and T represents
the total number of time steps, the aim is to transform this
series into a set of instances that are suitable for the model
to learn from. This involves creating either overlapping or
non-overlapping windows of a predefined length N , where
each window serves as an input instance to the model.

A windowed instance Xi from the time series can be for-
mulated as Xi = (xi, xi+1, . . . , xi+N−1), with N being the

Preprocessing

Train a deep learning
(CNN) model

Learn Conditional
Probability Tables (CPTs)

Combine and Normalize
Predictions

Training Phase

Input data

Probability Vector

Predict Deep learning
probabilities

Predict Bayesian Class
Probabilities

Inference Phase

Figure 2: Architecture of the model illustrates two phases of
the workflow, with each step in the respective phases.

window size, and i ranging from 1 to T − N + 1 for non-
overlapping windows. The adjustment for i varies for over-
lapping windows, depending on the step size S chosen for
the overlap. For a classification task, the associated label yi

for each instance Xi is a vector representing the class of the
sequence within the window. In a scenario with C classes,
yi is a one-hot encoded vector of length C, where each ele-
ment corresponds to a class, and the element for the correct
class is set to 1, while all others are set to 0.

Formally, the segmentation process trans-
forms the continuous time series into a dataset
{(X1,y1), (X2,y2), . . . , (XM ,yM)}, where M =
⌈(T − N + 1)/S⌉ for overlapping windows with step size
S. This structured approach enables the efficient utilization
of the time series data for model training, facilitating the
extraction of meaningful patterns that are predictive of
the class labels, thus aligning the input format with the
requirements of deep learning models for classification
tasks.

Training Phase: The training phase consists of fitting a
deep-learning model to find the relationship between the in-
dependent variable Xi and the dependent variable yi, as
well as building the conditional probability tables (CPTs)
that model the transition probabilities between classes. The
fitting of the deep learning model follows standard practices
and any deep learning architecture can be used. Thus, here
we focus on explaining the process of learning the creating
the CPTs.

Let Y = {y1, y2, . . . , yM} be a sequence of actual class
labels, and k the maximum number of previous windows
to consider. The goal is to compute a set of Conditional
Probability Tables (CPTs), where each CPT is denoted as
P (yi|yi−m, . . . , yi−1) for 1 ≤ m ≤ k and m < i ≤M .

The algorithm proceeds as follows:

1. Initialize an empty collection of CPTs, denoted by C.

2. For each label yi in Y , for i = 1 to M :

(a) Determine the actual number of previous labels to con-
sider, m = random[1,min(i− 1, k)].

(b) For the selected m, construct the conditional sequence
Si−1
i−m = (yi−m, . . . , yi−1).

(c) Update the count C(Si−1
i−m, yi), which represents the

occurrence of label yi given the sequence Si−1
i−m.

3. After processing all labels, for each sequence S and label
y in C, convert the counts to probabilities:

P (y|S) = C(S, y)∑
y′ C(S, y′)

where y′ iterates over all possible labels given the se-
quence S.

The resulting collection C effectively represents the CPTs,
where each entry corresponds to the conditional probability
of a label given a preceding sequence of labels. This algo-
rithm is described in pseudocode in Algorithm 1.

We should note that the number of previous labels m to
consider for each current label yi is a random integer be-
tween 1 and k, and not a constant. That is done for a number
of reasons.

1. Variability in Context Length: By randomly selecting the
length of the preceding sequence of labels to consider, the
function introduces variability in the context lengths used
to predict the current label. This approach can help the
model learn from a diverse set of conditions, rather than
being limited to a fixed-length context.

2. Robustness to Overfitting: Randomizing the context
length can help in preventing the model from overfitting
to a particular sequence length. By learning to predict the
current label from a variety of previous label lengths, the
model may generalize better to unseen data. This tech-
nique introduces a form of regularization, as it prevents
the model from relying too heavily on specific patterns
that only exist for a particular context length.

3. Efficiency and Exploration: In scenarios where the op-
timal context length is unknown, randomly varying m
allows the algorithm to explore different context lengths
without the need for extensive parameter tuning. This can
be especially useful in early stages of model development
or when dealing with datasets where the temporal depen-
dencies are not well understood.

4. Modeling Real-world Uncertainty: In many real-world
scenarios, the relevance of past information may vary un-
predictably. By introducing randomness in the selection
of m, the function mimics this uncertainty, potentially
making the learned CPTs more robust to variations in the
importance of historical data.

Inference Phase: During the inference phase, the baseline
deep learning model is applied to the test set, taking each
window of the dataset as input and producing a probability

Algorithm 1 Learn Conditional Probability Tables (CPTs)
Require: y = [y1, y2, . . . , yM] (sequence of class labels), k

(maximum number of previous windows)
Ensure: CPTs (Conditional Probability Tables)

1: Initialize CPTs as an empty dictionary
2: for i = 1 to M do
3: m ← Random integer in [1,min(k, i − 1)] if i > 1

else 1
4: currentLabel← y[i]
5: previousLabels← (y[max(1, i−m)], . . . , y[i−1])
6: CPTs[previousLabels][currentLabel] ←

CPTs[previousLabels][currentLabel] + 1
7: end for
8: for all (previousLabels, counter) in CPTs do
9: total← sum of all counts in counter

10: for all label in counter do
11: CPTs[previousLabels][label] ←

CPTs[previousLabels][label]
total

12: end for
13: end for
14: return CPTs

vector ŷi, where each probability corresponds to the confi-
dences for each class. At the same time, using the CPTs, we
predict the Bayesian posterior label probabilities based on
the labels predicted for the previous windows. This process
can be described as follows:
Given:

• P , a dictionary of CPTs where each key is a tuple rep-
resenting a sequence of previous labels and its value is a
distribution over possible current labels.

• L = (l1, l2, . . . , ln), a tuple of previous predicted labels.

• C, the total number of distinct classes.

Objective:

• To compute a probability vector p of length C, where
each entry pc represents the probability of the class c
given the sequence of previous labels L.

Procedure:

1. Initialize a vector psum of length C with all entries set to
0 and a scalar ωsum also set to 0. These variables will ac-
cumulate the weighted probabilities and the total weight,
respectively.

2. For each possible subsequence S of L, starting from the
last label and extending to include up to the entire se-
quence L, do the following:

• Let S = (ln−i+1, . . . , ln) for i ranging from 1 to |L|.
• If S is a key in P , indicating that we have a CPT for

this sequence of labels, then:
– Retrieve the probability distribution Sprob = P[S].
– For each class label c and its associated probability

probc in Sprob, update the accumulator: psum[c] ←
psum[c] + probc × |S|.

– Update the total weight: ωsum ← ωsum + |S|.

3. If ωsum > 0, normalize the accumulated probabilities by
the total weight to obtain the final probability vector: pc =
psum[c]
ωsum

for each class c.

4. If ωsum = 0, implying that no matching subsequences
were found in P , set all entries of p to 1

C , distributing the
probability equally among all classes.
The output is the probability vector p, where each entry

pc is the weighted average probability of class c given the
observed sequence of previous labels L. This algorithm is
described in pseudocode in Algorithm 2.

At the training time, it was pointed out that the length of
the context window m varies between 1 and k. At inference
time, conditional probabilities that are derived from longer
contexts (i.e., more labels in the past) are given a higher
weight, capturing the fact that a longer sequence of known
labels contains a higher certainty in the prediction of future
labels than shorter contexts.

Algorithm 2 Predict Bayesian Class Probabilities
Require: P (CPTs as a dictionary), L (previous predicted

labels as a tuple), C (number of distinct classes)
Ensure: p (probability vector of length C)

1: Initialize wsum ← 0, psum ← 0 of length C
2: for i = 1 to |L| do
3: S ← (L[|L| − i+ 1], . . . , L[|L|]) ▷ Subsequence of

previous labels
4: if S in P then
5: Sprob ← P[S]
6: w ← |S| ▷ Weight, proportional to subsequence

length
7: for all (label, prob) in Sprob do
8: psum[label]← psum[label] + prob · w
9: end for

10: wsum ← wsum + w
11: end if
12: end for
13: if wsum = 0 then return

[
1
C

]
repeated C times

14: else
15: p←

[
psum

wsum
for psum in psum

]
16: return p
17: end if

Combining Probabilities from DL and Bayesian Models:
The final stage of the inference phase is to combine the prob-
abilities returned by the deep learning model with those re-
turned by the Bayesian model, thus refining the original pre-
diction. This process goes as follows.

Given two probability vectors d = [d1, d2, . . . , dC] and
b = [b1, b2, . . . , bC], representing the class probabilities
predicted by a deep learning model and a Bayesian model
respectively, and a weight λ ∈ [0, 1], the objective is to com-
pute a combined probability vector p = [p1, p2, . . . , pC].
The combined probabilities are calculated as a weighted av-
erage of the corresponding probabilities from d and b for
each class c, as follows:

pi = λdi + (1− λ)bi, for i = 1, . . . , C

where C is the number of classes.
This process results in p, where each pi represents the

normalized probability of class i, reflecting a consensus pre-
diction between the deep learning and Bayesian models. Al-
gorithm 3 describes this process in pseudocode.

The hyper-parameter λ is defined by the user, and it re-
flects how much weight we give to the deep learning pre-
diction versus the Bayesian prediction. Under usual circum-
stances, the deep learning prediction gets a higher weight. In
this study, the optimal value of λ was tuned for each dataset
using a linear search on the validation set. Usually, a λ value
close to 0.8 worked best.

Algorithm 3 Combine and Normalize Predictions
Require: d (probabilities from deep learning model), b

(probabilities from Bayesian model), λ (weight for deep
learning model probabilities)

Ensure: p (combined probability vector)
1: Initialize c to be an empty list of size equal to d
2: for i = 1 to |d| do
3: ci ← λ · di + (1− λ) · bi ▷ Calculate weighted

average
4: Update p[i] with pi
5: end for
6: return p

3 Experiments and Results
3.1 Datasets
Our methodology was rigorously tested across several time
series datasets, each selected for its unique characteris-
tics and challenges in human activity recognition. These
datasets include UniMiB SHAR, UCI HAR, Leotta 2021,
and TWristAR.
• UniMiB SHAR (Micucci, Mobilio, and Napoletano

2017): Comprises accelerometer data from 30 individ-
uals, capturing 9 distinct activities, suitable for assess-
ing model performance on daily human actions. The se-
quence length is 151 timesteps, with each sample hav-
ing 1 channel (total acceleration magnitude). Train (4601
samples), Validation (1454 samples), and Test (1524 sam-
ples).

• UCI HAR Dataset (Jain and Kanhangad 2017): Fea-
tures 6 activity types from wearable sensors of 30 volun-
teers, highlighting its application in wearable technology.
The sequence length is 128 timesteps and 4 channels (X,
Y, Z, magnitude acceleration). Train (5514 samples), Val-
idation (1838 samples), and Test (2947 samples).

• Leotta 2021 (Leotta, Fasciglione, and Verri 2021): This
dataset contains three-axial accelerometer, magnetometer,
and gyroscope data recorded from different parts of the
body: dominant wrist, hip, and ankle while performing
17 different daily-life activities. The dataset includes data
of 8 volunteers. The sequence length is 300 timesteps
and 3 channels (X, Y, Z, magnitude acceleration chan-
nels). Train (2391 samples), Validation (1167 samples),
and Test (1987 samples).

• TWristAR (Hinkle, Atkinson, and Metsis 2022): This
is a three subject dataset recorded using an e4 wrist-
band. Each subject performed six scripted activities: up-
stairs/downstairs, walk/jog, and sit/stand. The dataset
contains motion (accelerometer) data, temperature, elec-
trodermal activity, and heart rate data. The sequence
length is 96 timesteps and 1 channel (total acceleration
magnitude). Train (1869 samples), Validation (208 sam-
ples), and Test (1091 samples).

3.2 Baseline CNN Model
Architecture
• Input layer: (nsteps, nfeats), for nsteps time steps and nfeats

features
• 2 Conv1D layers, 100 filters, kernel size ksize, ReLU acti-

vation
• Dropout (rate 0.5)
• MaxPooling1D (window: 2)
• Flatten
• 2 dense layers, first 100 units, ReLU, final softmax output

Hyperparameters
• ksize: varied for temporal dependencies
• 100 convolutional filters
• Dropout rate 0.5
• Batch size & epochs adjusted per dataset

Training Used Adam, categorical cross-entropy loss.

3.3 Results
We evaluate the performance of our proposed method on
four different human activity recognition (HAR) datasets
and compare the performance of our model against a base-
line CNN model, and against three state-of-the-art time se-
ries classification deep learning methods, namely Inception-
Time (Ismail Fawaz et al. 2020), Time-Series Transformer
(TST) (Zerveas et al. 2021) and LSTNet (Lai et al. 2018).
The baseline CNN model is the same model as the one we
use in combination with our Bayesian model. InceptionTime
is a popular time series classification model that uses an en-
semble of deep CNN models inspired by the Inception-v4
architecture, and TST is a transformer-based framework for
multivariate time series classification. Finally, LSTNet is a
hybrid LSTM-CNN architecture that attempts to learn both
short-term and long-term patterns in time series data, which
directly relates to our method.

To obtain confidence intervals, each experiment was re-
peated 10 times, and at each run, each model was re-trained
on the same training set but with a different shuffling of the
training instances.

The results of our experiments are presented in both Table
1 and the accompanying box plot in Figure 3. The table pro-
vides a detailed breakdown of accuracy percentages, stan-
dard deviations, and 95% confidence intervals across vari-
ous datasets, highlighting the consistent performance of our
methodology. The box plot visually complements these nu-
merical results, offering insights into the distribution of ac-
curacy values, central tendencies, and potential outliers.

As is evident from the results, our method outperforms
the competing methods in all but one dataset. The Leotta

Table 1: This table presents a comprehensive comparison of the average prediction accuracy percentages for the proposed
method, baseline CNN, InceptionTime, LSTNet, and TSTPlus models. It includes the standard deviation (Std. Dev.) for the
proposed method to indicate result variability and 95% confidence intervals (95% CI) for all methods, providing a statistical
perspective on the precision of the accuracy measurements.

Dataset Our Method Baseline CNN InceptionTime LSTNet TSTPlus
Acc. % Std. 95% CI Acc. % 95% CI Acc. % 95% CI Acc. % 95% CI 95% CI Acc. %

UniMiB SHAR 92.1 0.90 [90.0, 93.1] 86.4 [84.3, 88.2] 85.0 [83.2, 87.6] 90.4 [88.3, 92.0] 86.1 [85.3, 88.2]
UCI HAR 82.1 0.69 [81.1, 82.9] 79.8 [78.2, 81.1] 78.9 [78.1, 79.6] 80.6 [79.0, 81.3] 80.2 [79.4, 81.3]
TWristAR 78.4 0.98 [77.5, 80.7] 71.5 [68.4, 75.2] 75.4 [72.1, 77.4] 75.2 [73.1, 76.9] 72.8 [71.2, 74.5]
Leotta 45.0 1.56 [42.3, 47.1] 35.0 [31.1, 36.7] 46.7 [45.2, 48.0] 41.9 [40.6, 43.3] 38.4 [37.5, 39.3]

UniMiB SHAR UCI HAR Leotta TWristAR
Datasets

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Box-and-Whisker Plot of Time-Series Prediction Accuracy

Our Method
Baseline CNN
InceptionTime
LSTNet
TST

Figure 3: Box Plot visualization of the results from Table 1.

dataset, in which our method comes second overall, pro-
duces much lower accuracy for all models. That can be
explained by the fact that it includes a much larger set of
classes (17) compared to the other datasets involving activi-
ties of daily living (ADLs). This dataset also contains more
frequent transitions between different classes, which likely
diminishes the stabilizing effect of class transition that our
method provides.

In three out of the four datasets, we also observe that our
method has lower variance and, subsequently, tighter inter-
vals, indicating higher stability across different runs. This,
again, is likely the result of the Bayesian prediction adding
a stabilizing effect on final predictions.

The results support our hypothesis that modeling tempo-
ral context regarding label transitions and past labels, can
enhance the prediction accuracy of a model. Most mod-
ern deep-learning time series classification methods ignore
this fact and treat each window as a separate instance in-
dependent of the neighboring instances. Previous attempts
at learning long-term dependencies (e.g. LSTNet) have fo-
cused on learning long-term patterns from the data rather
than the labels. This work has shown that performing infer-
ence on the labels can be just as beneficial, and it does not
require a deep neural network to learn label transitions, as

labels are usually discrete and can be more easily modeled
as probability tables.

Again, it should be emphasized that the proposed ap-
proach can be added on top of any deep learning model
to improve prediction accuracy and stability. In our experi-
ments, it was combined with a basic CNN model, and it not
only improved the predictions of the CNN model in every
dataset but also outperformed the more advanced time-series
classification models in most cases.

4 Conclusion
In this study, we introduced a novel methodology that syn-
ergizes Bayesian inference with deep learning to enhance
time-series classification, particularly within the realm of
human activity recognition. Our approach leverages tem-
poral context to significantly improve predictive accuracy,
as evidenced by comprehensive experiments across various
datasets. The findings not only validate the effectiveness of
integrating temporal context but also set new benchmarks
for future research in the field. This research marks a pivotal
step towards sophisticated temporal pattern recognition, of-
fering broad implications for both theoretical advancements
and practical applications in time-series analysis.

References
Abanda, A.; Mori, U.; and Lozano, J. A. 2019. A review on
distance based time series classification. Data Mining and
Knowledge Discovery 33(2):378–412.
Alzubaidi, L.; Zhang, J.; Humaidi, A. J.; Al-Dujaili, A.;
Duan, Y.; Al-Shamma, O.; Santamarı́a, J.; Fadhel, M. A.;
Al-Amidie, M.; and Farhan, L. 2021. Review of deep learn-
ing: Concepts, cnn architectures, challenges, applications,
future directions. Journal of big Data 8(1):1–74.
Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; and Keogh, E.
2017. The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances.
Data mining and knowledge discovery 31:606–660.
Botsch, M. 2023. Machine learning techniques for time
series classification. Cuvillier Verlag.
de Mattos Neto, P. S.; Cavalcanti, G. D.; Firmino, P. R.;
Silva, E. G.; and Nova Filho, S. R. V. 2020. A temporal-
window framework for modelling and forecasting time se-
ries. Knowledge-Based Systems 193:105476.
Hinkle, L. B.; Atkinson, G.; and Metsis, V. 2022. Twristar -
wristband activity recognition. https://zenodo.org/
records/5911808.
Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.;
and Muller, P. A. 2019. Deep learning for time series classi-
fication: A review. Data Mining and Knowledge Discovery
33(4):917–963.
Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.;
Schmidt, D. F.; Weber, J.; Webb, G. I.; Idoumghar, L.;
Muller, P.-A.; and Petitjean, F. 2020. Inceptiontime: Find-
ing alexnet for time series classification. Data Mining and
Knowledge Discovery 34(6):1936–1962.
Jain, A., and Kanhangad, V. 2017. Human activity classi-

fication in smartphones using accelerometer and gyroscope
sensors. IEEE Sensors Journal 18(3):1169–1177.
Khan, M.; Wang, H.; Riaz, A.; Elfatyany, A.; and Karim,
S. 2021. Bidirectional lstm-rnn-based hybrid deep learn-
ing frameworks for univariate time series classification. The
Journal of Supercomputing 77:7021–7045.
Kirichenko, L.; Radivilova, T.; and Bulakh, V. 2018. Ma-
chine learning in classification time series with fractal prop-
erties. Data 4(1):5.
Lai, G.; Chang, W.; Yang, Y.; and Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural net-
works. In The 41st international ACM SIGIR conference on
research & development in information retrieval, 95–104.
Leotta, M.; Fasciglione, A.; and Verri, A. 2021. Daily
Living Activity Recognition Using Wearable Devices: A
Features-rich Dataset and a Novel Approach.
Micucci, D.; Mobilio, M.; and Napoletano, P. 2017. Unimib
shar: A dataset for human activity recognition using acceler-
ation data from smartphones. Applied Sciences 7(10):1101.
Wang, Z.; Yan, W.; and Oates, T. 2017. Time series clas-
sification from scratch with deep neural networks: A strong
baseline. In 2017 International joint conference on neural
networks (IJCNN), 1578–1585. IEEE.
Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; and
Eickhoff, C. 2021. A transformer-based framework for mul-
tivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD conference on knowledge discov-
ery & data mining, 2114–2124.
Zhang, Y.; Zhu, Y.; and Zhang, Y. 2020. Enhancing tem-
poral representation learning for time series classification.
IEEE Transactions on Knowledge and Data Engineering
33(1):1–1.

