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Abstract

In this paper, we study the multi-robot coalition
formation problem for instantaneous task alloca-
tion, where a group of robots needs to be allo-
cated to a set of tasks to execute optimally. One
robot might not be enough to complete a given
task, so forming teams to complete these tasks be-
comes necessary. In many real-world scenarios, the
robots might have noisy localization. Due to this,
cost calculations for robot-to-task assignments be-
come uncertain. However, a small amount of re-
sources might be available to accurately localize
a subset of these robots. To this end, we pro-
pose a bipartite graph matching-based task allo-
cation strategy (centralized and distributed ver-
sions) that gracefully handles the uncertainty aris-
ing from cost calculations using an interval-based
technique while leveraging the fact that a small
number of robots might be localized on demand
using an external system such as drones. We have
tested the proposed technique in simulation. Re-
sults show that our approach is moderately fast
– scales up to 100 robots and 50 tasks in 0.85
sec. (distributed solution) while gracefully han-
dling partial uncertainty.

Introduction
In today’s era of automation, robots are deployed
in real-world situations to complete complex tasks.
In many such practical applications, including object
transportation in warehouses, environmental monitor-
ing, search and rescue, and precision agriculture, among
others, multiple robots need to cooperate toward a
global common goal. One of the first steps of such co-
ordination is coalition structure formation – given m
tasks and n robots, divide n robots into m tasks such
that a given criterion, e.g., value is optimized (Service
and Adams 2011; Gerkey and Matarić 2004). In this pa-
per, we specifically optimize the cost metric – the over-
all cost to form m such teams needs to be minimized.
We study instantaneous allocation, where the problem
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Figure 1: An illustration of the studied problem setup
is presented. The probable ground robot locations are
denoted with green shapes around the robots’ ground-
truth locations. The robot on the right is accurately
localized by a drone. The tasks are represented with
orange alarms. Now, the goal is to assign the robots to
the tasks.

is solved when the allocation is complete once and no
new robot can arrive or no new task can be taken into
account (Zhang and Parker 2013).

As the cost of forming such coalitions or teams de-
pends on the distance that the robots need to travel
from their current locations to the task locations, local-
ization of the robots plays a significant role. However,
in practical situations, such localization can be noisy.
This might lead to uncertainty in the cost calculation,
and as a result, the formed coalitions might not be of
good quality (Yang and Chakraborty 2020). Although
the multi-robot task allocation problem has received
considerable attention and mostly game theoretic treat-
ment in the past years, handling uncertainty remains a
challenge. We model the solution as a coalition forma-
tion game where the distance from a robot to a task is
estimated but it is uncertain due to localization noise,
for example. In our problem setup, we assume that a
small number of robots k (< n) can be accurately lo-
calized using available limited resources. For example,
k unmanned aerial vehicles with RF tag readers are
available to be deployed to supplement k ground robots’
on-board local and noisy localization technique (Buffi,
Nepa, and Cioni 2017). In that case, the ground robots
for task assignment can have RF tags on them that can
be read by the drones to supplement them with accu-



rate global localization (Buffi, Nepa, and Cioni 2017).
The question then becomes how we choose k such robots
that need to be prioritized for accurate localization.

To handle uncertainty in team costs, we take inspira-
tion from a novel modification of the Hungarian algo-
rithm proposed by Liu and Shell (Liu and Shell 2011).
Note that these authors have studied the task assign-
ment problem for single-task to single-robot assignment
scenarios. Thus, they did not require the formation of
coalitions. We, on the other hand, start by finding an
initial set of m coalitions by not taking the uncertainty
into account. Next, we modify these initial coalitions
by integrating an interval-based mechanism. We also
decide which k robots should be accurately localized,
e.g., using an external system such as k drones. Fig. 1
shows an illustrative example.

We have implemented the proposed algorithms in
simulation with up to 100 robots and 50 tasks in both
centralized and asynchronous distributed settings. The
main contributions of this paper are as follows.

• This approach outlines a novel way to quantify how
critical a robot’s accurate localization is to a multi-
robot task assignment solution. These results are
used to decide which robot to localize first with avail-
able resources in order to obtain a more optimal so-
lution under uncertainty.

• Our presented algorithm has a realistic worst-case
time complexity, is moderately fast and always out-
performs an existing algorithm, namely OTMaM .

Related Work

Multi-robot task allocation is a very important prob-
lem to solve due to its practical relevance. In (She-
hory and Kraus 1998), one of the first solutions to
this problem was presented. Their solution provided
a (k + 1)-approximation where k is the highest num-
ber of members in a coalition. Similar to this, in our
paper, we assume that the number of robots needed
per coalition is bounded by k, which includes mul-
tiplicities. In (Service and Adams 2011), a bipartite
matching-based coalition formation approach is pro-
posed, which has a complexity of O(n

3
2m) for the

studied service model – which is similar to the set-
ting of (Shehory and Kraus 1998) as well as ours.
Along a similar path, Dutta and Asaithambi (Dutta and
Asaithambi 2019) have also used a bipartite matching-
based setting for task allocation. Greedy solutions are
also popular for this problem. In (Zhang and Parker
2013), the authors propose two greedy heuristics for
task allocation with heterogeneous robots. In (Czar-
necki and Dutta 2021), the authors proposed a scal-
able task allocation solution by combining bipartite
matching and a greedy heuristic. Distributed solutions
possibly with heterogeneous robots can be found in
(Dutta et al. 2021; Jang, Shin, and Tsourdos 2018;
Mazdin and Rinner 2021). The authors in (Xue et al.
2019) have used the time window of the tasks and power

consumption by the robots as the utility function. Re-
cently, clustering similar robots to be assigned to tasks
has been used as a solution approach for multi-robot
task allocation (Dutta, Ufimtsev, and Asaithambi 2019;
Martin et al. 2023). Simultaneous path planning and
task allocation is also a relevant problem. The au-
thors in (Yang and Chakraborty 2020) have consid-
ered uncertain robot-task assignment costs (e.g., due
to unexpected obstacles on the path) for this. Unlike
this, we take a graph-matching and interval-based ap-
proach to handle uncertainty. In (Liu and Shell 2011;
Matarić, Sukhatme, and Østergaard 2003), the authors
consider uncertainty albeit not for coalition formation.
Our proposed approach in this paper combines ideas
from (Dutta and Asaithambi 2019) and (Liu and Shell
2011) while presenting a centralized as well as a dis-
tributed solution to the studied problem.

Problem Definition and Notations
Robot and task model. Let R = {r1, r2, ..., rn} rep-
resent a set of n robots and every robot ri is character-
ized by its location Pri and its unique ID. Each robot is
able to localize using onboard sensing such as odome-
try, which is known to be noisy. They do not have more
accurate localization sensors such as GPS.

Let T = {t1, t2, ..., tm} represent a set of m tasks
where n > m. Similar to the robots, each task tj is char-
acterized by its location Ptj as well as by the optimal
number of robots required to execute it. This is denoted
by the tuple ⟨Ptj , Oj⟩. The value Oj for each task tj is
known beforehand and every robot has access to this
information. We assume that k < n of these robots can
be accurately localized using an external system such
as RF-tag reader drones.

A coalition c ⊆ R is a subset of robots assigned
to some task. Robots in the same coalition work in
a coordinated manner to complete the assigned task.
A coalition structure CS, is a non-overlapping parti-
tion of robots (a set of disjoint coalitions whose union
is R). That is, CS = {c1, c2, ..., cm},∀ci, cj ∈ CS, i ̸=
j, ci ∩ cj = ∅,

⋃
ci∈CS ci = R. Each coalition ci is as-

signed to task ti for i = 1, 2, ...,m. A coalition structure
represents our solution to the problem. Let C denote the
set of all such possible partitions (so CS ∈ C). The size
of C for n robots and m tasks is the Stirling set number
of the second kind S(n,m), i.e., it is the total number
of non-overlapping partitions of an n set into exactly m
nonempty clusters. The total number of partitions, if
the number of clusters (tasks) is not taken into account,
is the Bell number Bn, which grows exponentially.
Value Function. Initially, all robots are placed in an
environment such as an agricultural field. Upon assign-
ment to some task, a robot moves to the task location in
order to complete it. Each robot spends some amount of
energy while moving to a task. To account for this, we
use a cost function, defined as cost(ri, tj) = d(Pri , Ptj ),
where d(Pri , Ptj ) denotes the travel cost between the
robot and task’s locations. The value of a robot-task
pair is val(ri, tj) = MAX COST + 1− cost(ri, tj). We



define the value of a coalition to be the sum of the values
incurred by all its member robots, i.e.,

val(ci) =
∑
rj∈ci

val(rj , ti). (1)

Then the value of a coalition structure is the sum of the
values of all the coalitions in it, i.e.,

val(CS) =
∑

ci∈CS

val(ci). (2)

Problem Objective. Given a set of n robots and m
tasks with each task ti requiring Oi robots to finish
it, the objective is to find the coalition structure CS∗

containing exactly m coalitions for m tasks where

CS∗ = arg max
CS∈C

val(CS),

s.t., ∀i ∈ {1, 2, ...,m}, |ci| = Oi. (3)

Note that maximizing the value is equivalent to mini-
mizing the cost of a coalition structure in this setting.

Algorithm 1: OTMaM Algorithm

Input: G0: A bipartite graph
Output: A: An allocation.

1 D ← ∅;
2 Sv, Su ← Adjacent nodes of v ∈ V and u ∈ U

respectively
3 A(v)← ϕ, ∀v ∈ V
4 for each v ∈ V do
5 u← The best match of v
6 if u and v are mutually best then
7 D = D ∪ {v, u}
8 A(v) = u

9 while D ≠ ∅ do
10 u← A node in U from an edge in D
11 D = D \ {v′, u} where A(v′) = u
12 for each v ∈ Su where A(v) = ϕ do
13 if v and u′ are mutually best and

|cu′ | < Ou′ then
14 D = D ∪ {v, u′}
15 A(v) = u′

16 return A

Probabilistic One-to-Many Matching
One-to-Many Matching. The foundation of our pro-
posed approach is the One-to-many bipartite match-
ing (OTMaM algorithm)-based task allocation tech-
nique (Dutta and Asaithambi 2019). Note that it does
not consider the uncertainty in robot locations, and con-
sequently, it cannot handle the uncertainty.

Given that the OTMaM is our foundation algorithm,
we briefly explain its working procedure here (Algo-
rithm 1). First, a bipartite graph (G0({V,U}, E,W ))
is created with two sets of nodes – robots (R) and tasks

(T ) respectively. Edges (E) between them indicate their
potential allocations with the edge weights (W ) repre-
senting the values of pair-wise allocations (val(ri, tj)).
The first phase of OTMaM algorithm is a one-to-one
bipartite matching followed from (Manne and Bissel-
ing 2007), where the dominating edges (D) are kept
in the matching. An edge e(u, v) ∈ E is a dominating
edge if for both u and v, edge e(u, v) carries the maxi-
mum weight among all the edges originating from them.
These dominating edges indicate that the robot-task
pairs are mutually most advantageous to be allocated.
Next, the remaining edges are processed until all the
tasks have the required number of robots. The solution
of this algorithm is a set of edges S0 ⊆ E represent-
ing the allocated task-robot pairs. It has been shown
that OTMaM algorithm provides a low worst-case time
complexity while guaranteeing a performance bound.

Our Proposed Algorithm

First, we discuss the centralized solution, which is com-
puted by a leader robot. Let S0 be the initial coali-
tion structure found by Algorithm 1 on G0. Under non-
noisy cost settings, following (Dutta and Asaithambi
2019), we can state that S0 is a near-optimal solution.
For each edge ek ∈ E and ek ∈ S0 (meaning ek is
part of the solution), let Gk be a bipartite graph of the
robots and tasks that do not include ek. We run algo-
rithm 1 on Gk and obtain a resultant solution Sk where
dk = val(S0) − val(Sk) is the maximum error allowed
in ek before S0 is no longer the solution determined by
the OTMaM algorithm. If ek /∈ S0, we hide all adjacent
edges in Gk instead of the edge itself.

We then can construct an interval Ik for each ek in
which the actual weight of ek must lie in order to main-
tain S0 as the solution determined when the algorithm
is run on the system.

Ik =

{
[wk − dk,∞) , ek ∈ S0

(−∞, wk + dk] , ek ̸∈ S0
(4)

Edges with large allowable errors, and therefore, large
tolerance intervals, can have large fluctuations in their
weight before S0 can no longer be trusted as a solution.
Similarly, edges with small allowable errors, and there-
fore, small tolerance intervals, cause the solution to be
more sensitive to fluctuations in that edge’s weight. We
can then use the size of an edge’s tolerance interval as
a way to quantify the importance of the edge’s actual
weight to the original solution (Liu and Shell 2011).
This approach alone, however, does not take into ac-
count the probability of each value in the tolerance in-
terval. For this, we can use the probability density func-
tion for that edge. We then have a useful quantification
of the importance of a robot’s accurate localization and
the corresponding edge’s true weight to the solution
taking into account its most probable weights. In other
words, the criticality of an edge is equal to the proba-
bility of the true weight of the edge being a value that
changes the solution given by our algorithm.



Now we have that the criticality of an edge’s actual
weight calculated from the true localization of a robot
to the determined solution is

Yk =

{
1−

∫∞
wk−dk

f(x) , ek ∈ S0

1−
∫ wk+dk

−∞ f(x) , ek ̸∈ S0.
(5)

where f is a probability density function for the true
weight of ek. We, therefore, have a near-optimal solu-
tion for the system using estimated edge weights, and
a value for each edge representing how critical the ac-
tual edge weight is to this solution. We can then for
each node of robot ri, sum the criticality of its outgo-
ing edges to get a value Li to determine how critical the
exact location of robot ri is to the solution. Next, we
can sort the robots by their L values, and use available
resources to localize the most critical k robots first. The
pseudocode is presented in Algorithm 2.

Distributed Version

In the distributed version of our algorithm, after the
initial solution has been determined by some arbitrar-
ily selected leader robot, it broadcasts the edge weight
matrix and initial assignments to all other robots. Next,
each robot computes its own local criticality by running
steps 3-11 of Algorithm 2 on its adjacent edges. In this
way, each robot computes its L value and reports back
to the lead robot, which then sorts the robots by their
L values.

Algorithm 2: Probabilistic One-to-many Bi-
partite Matching

1 Run Algorithm 1 on G0 to determine the initial
matching S0

2 for ek ∈ G0 do
3 let Gk = G0

4 if ek ∈ S0 then
5 Hide ek in Gk

6 else
7 Hide all edges adjacent to ri where ri is

on ek
8 end
9 Run Algorithm 1 on Gk and get a new

matching Sk

10 dk = val(S0)− val(Sk)
11 Calculate Yk from Eq. 5
12 end
13 Calculate Li from Yk and sort robots by

non-increasing L
14 Begin localizing robots in sorted order
15 Once all resources are used, run Algorithm 1 on

G0 with updated weights

Complexity Analysis. In (Dutta and Asaithambi
2019), it is shown that the worst-case time complexity
of Algorithm 1 is O(|E|). Algorithm 2 proceeds by first
running Algorithm 1, then for each edge in the graph,

(a) (b)

Figure 2: Time comparison among a) different task
counts with our approach, and b) against OTMaM .

Algorithm 1 is called once, resulting in |E| calls to Al-
gorithm 1 in total. This results in a worst-case time
complexity of O(|E|2). All of the other control struc-
tures within the for loop in Algorithm 2 run in time
that is less than O(|E|) so the run time in each loop
iteration is dominated by the call to Algorithm 1. In
the distributed version of Algorithm 2, each robot calls
Algorithm 1 one time per task, giving us a worst-case
time complexity of O(nm2). This reduction in complex-
ity by a factor of the number of agents n is substantial
in that there is always a significantly greater number of
agents than tasks in a given system.

Experiments and Results
Settings. We tested with 10 to 100 robots and the
count is varied between 10 and 50% of n. We assumed
the robots and tasks to be uniformly distributed across
an environment of size 100 × 100. The uncertainty is
modeled as a Gaussian noise where the current robot lo-
cations are sampled from N (l, σ). l is the ground-truth
location and σ is the standard deviation. Note that the
optimal task requirements in terms of the number of
robots were randomly generated such that the total
number of required robots across all tasks was equal
to n. We constructed a matrix of our edge weights and
compared our solution’s performance to the optimal so-
lution. This helped us to report how close-to-optimal
our found solutions are compared to OTMaM . We used
the Message Passing Interface (MPI) as the distributed
processing framework for the distributed version. For
testing, we utilized the Titan supercomputer at the
Advanced Research Computing and Analytics Center
at Oral Roberts University. Titan is a supercomputer
with 394 compute nodes and 4240 cores. Each robot
is assigned a unique computing core similar to a real-
world multi-robot setting, and the communication hap-
pens via one-to-one message passing asynchronously.
We have assumed to have complete communication, i.e.,
each robot can communicate with every robot in R.
Each test is run 10 times and the average and standard
deviation results are presented here.

Note that when no robot is correctly localized, that
would be equivalent to running OTMaM algorithm with
the estimated edge weights, i.e., all the robots with po-



sitional uncertainty. On the other hand, when 100%
robots are localized, that is equivalent to executing OT-
MaM algorithm without any uncertainty present in the
environment. In the optimality plots, the blue and red
lines indicate the results with these two baselines re-
spectively whereas the black lines indicate our results.
Next, our algorithm’s performance metrics compared to
OTMaM algorithm are presented.

Figure 3: Optimality comparison among our algorithm,
OTMaM , and the OTMaM with no uncertainty for
various task and robot settings. σ is set to 30.

Results. First, we are interested in the run time of
our proposed algorithm. Fig. 2. (a) shows the time re-
sults for various task and robot counts. As can be seen,
with more tasks, the time requirements were higher. As
the number of edges in G0 was higher with more tasks,
more processing of intervals and criticality calculations
were required. Therefore, we find that as the task count
increased, the execution time of the algorithm also in-
creased. We also investigated the time difference be-
tween the executions of Algorithm 1 and our proposed
solution. The time results with 10% tasks are presented
in Fig. 2. (b). Given that Algorithm 1 is called multiple
times to get our final solution, there is a considerable
gap in terms of run time between OTMaM and our solu-
tion. As expected, the run time is reduced significantly
by our distributed version – the maximum time is less
than 1 sec. for n = 100 and m = 50.
Next, we turn our attention to the optimality results.

Figure 4: Optimality comparison among our algorithm,
OTMaM , and the OTMaM with no uncertainty for
various task and robot settings. σ is set to 50.

We have varied the value of σ between {30, 50, 70},
which controlled the uncertainty in the robot locations.
On the other hand, as mentioned previously, we as-
sumed to have limited resources to localize some of the
robots perfectly. To emulate this, we varied the number
of localized robots between {10, 20, 30}% of n that are
most critical to the final value of the coalition struc-
ture (as discussed in Section 16). The results are pre-
sented in Figs. 3 – 5. Overall, our proposed technique
performed 2.2% better in terms of achieving closer to
optimal coalition structure than the baseline OTMaM
algorithm in all the experiments. The statistics across
all the test cases are provided in Table 1. In general,
as there are many robots in a relatively small test area,
we have noticed that the difference in optimality in our
presented algorithm and OTMaM is limited whereas in
a relatively sparse environment, such as shown in the
working example, our algorithm almost always yields
the optimal solution.

Algorithm Max Avg Min
Our algorithm 98.8 92.4 86.9

OTMaM 97.9 90.2 84.3

Table 1: Statistics of optimality percentages across all
test cases (better numbers are bolded).



When we look deeper into the numbers, we observe
the following. When changing the uncertainty level σ,
the optimality levels of each localization percentage re-
main similar. For instance, at σ = 30, we have that OT-
MaM gives us an average optimality of 90.29%, while
σ = 50 gives 89.77% and σ = 70 gives 90.57%. The
optimality of similar localization amounts also stays
very close across different uncertainty levels, however
as uncertainty increases there is a slight increase in the
amount of optimality gained per number of robots lo-
calized using our algorithm. When σ = 30, we have that
there is an average 1% increase in optimality for every
10% of robots localized. When σ = 50, we have 1.14%
increase per 10% robots, and with σ = 70, we get 1.35%
increase per 10% more localized robots. The rate of in-
crease did not have a significant change across different
robot counts for any uncertainty level. In every configu-
ration, we noticed an average increase in optimality val-
ues as the number of localized robots grew. We find that
even in uncertain environments with agent location ap-
proximations and a margin of error, OTMaM performs
well, achieving an average of 90.2% and a minimum of
84.3% of the optimal. Therefore, it can be considered
a proficient heuristic algorithm in such scenarios, while
our approach strategically reduces the gap between the
resulting CS value and the optimal value leveraging
available resources. Statistical analysis indicates that
fully localizing the top critical agents leads to a propor-
tional reduction in the gap between the solution value
and the true optimal across various configurations. See
Table 2 for numerical details.

robots localized mean gap reduction p-value
10% > 10% < 8.7e−9

20% > 20% < .00011
30% > 30% < .0025

Table 2: Analysis of reduction in the gap from optimal.

Conclusion and Future Work
In this paper, we propose an instantaneous multi-robot
task allocation strategy for a scenario where a subset of
the robots can be localized with almost no positioning
error (e.g., via an unmanned aerial vehicle) whereas the
rest of the robots might have uncertainties in position-
ing. Our proposed algorithm combines the strengths of
an existing task allocation technique that does not han-
dle uncertainty and an interval-based solution for one-
to-one robot-to-task mapping. By doing so while lever-
aging the available resources to localize a partial set of
robots, we show that our proposed algorithm achieves
closer to optimal solutions under uncertainty compared
to an existing baseline algorithm. Furthermore, our pro-
posed solution is easily scalable to a hundred robots and
fifty tasks while incurring a moderate time cost. In the
future, we are interested in investigating how uncer-
tainty in communication, i.e., missing communication
packets, affects the final solution.

Figure 5: Optimality comparison among our algorithm,
OTMaM , and the OTMaM with no uncertainty for
various task and robot settings. σ is set to 70.
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