
Improving Reinforcement Learning Experiments in Unity through Waypoint
Utilization

Caleb Koresh1, Volkan Ustun2, Rajay Kumar2, Tim Aris3
1 University of Florida, Gainesville, FL

2University of Southern California, Institute for Creative Technologies, Playa Vista, CA
3US Army Soldier Center, Orlando, Florida

calebkoresh@ufl.edu, ustun,kumar@ict.usc.edu, timjaris@gmail.com

Abstract

Multi-agent Reinforcement Learning (MARL) models
teams of agents that learn by dynamically interacting
with an environment and each other, presenting oppor-
tunities to train adaptive models for team-based sce-
narios. However, MARL algorithms pose substantial
challenges due to their immense computational require-
ments. This paper introduces an automatically gener-
ated waypoint-based movement system to abstract and
simplify complex environments in Unity while allow-
ing agents to learn strategic cooperation. To demon-
strate the effectiveness of our approach, we utilized
a simple scenario with heterogeneous roles in each
team. We trained this scenario on variations of re-
alistic terrains and compared learning between fine-
grained (almost) continuous and waypoint-based move-
ment systems. Our results indicate efficiency in learning
and improved performance with waypoint-based nav-
igation. Furthermore, our results show that waypoint-
based movement systems can effectively learn dif-
ferentiated behavior policies for heterogeneous roles
in these experiments. These early exploratory results
point out the potential of waypoint-based navigation
for reducing the computational costs of developing
and training MARL models in complex environments.
The complete project with all scenarios and results is
available on GitHub: https://github.com/HATS-ICT/ml-
agents-dodgeball-env-ICT.

Introduction
The development of autonomous synthetic characters
presents opportunities to provide safe, replicable, and cost-
efficient virtual training. These simulations require intel-
ligent virtual agents that can achieve human-level perfor-
mance and strategy to be effective. Reinforcement Learning
(RL) strives to find optimal policies in game-like environ-
ments and can produce adaptive behavior in virtual environ-
ments. Multi-agent Reinforcement Learning (MARL), on
the other hand, models multiple agents that learn by dynam-
ically interacting with an environment and each other, pro-
viding a framework for evaluating competitive and collabo-
rative dynamics between these agents (Buşoniu, Babuška,
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and De Schutter 2010). MARL algorithms have shown
the ability to learn policies demonstrating cooperative and
strategic team-oriented behaviors (Gronauer and Diepold
2022). State-of-the-art simulations utilize MARL algorithms
to generate behavior for dynamic and adaptive agents.

Even though MARL can assist in behavior generation for
military training simulations (Ustun et al. 2021), the task of
enabling machine learning to make effective decisions for
synthetic characters, including commander roles, is particu-
larly challenging given that these simulations unfold in com-
plex, multi-objective, continuous, stochastic, partially ob-
servable, non-stationary, and doctrine-based environments
involving multiple collaborating or competing players. Fur-
thermore, military training environments have heteroge-
neous entities with different roles. For example, some team
members may have weaponry that warrants other behavior.
As a result, leveraging MARL algorithms, even when only
considering homogeneous entities, requires immense com-
putational power to achieve convergence.

Waypoint-based navigation has shown the potential to
address the computational requirements of MARL experi-
ments by replacing the fine-grained action space with a more
abstracted, navmesh-based waypoint movement system in
single-agent reinforcement learning (Aris, Ustun, and Ku-
mar 2023). Such a movement system discretizes the move-
ment of agents and can increase the generality and suc-
cess rate of the models. This paper augments the waypoint-
based navigation to heterogeneous multi-agent systems and
shows that leveraging waypoints can decrease the compu-
tational requirements of MARL training with superior per-
formance compared to fine-grained action spaces. Further-
more, the waypoint-based models retain performance even
when translated back onto the simulation environment with
fine-grained action spaces.

For the scenarios in this paper, we utilized Unity’s ML-
Agents framework (Juliani et al. 2018) and a modified ver-
sion of Unity’s dodgeball environment (Berges et al. 2021),
which acts as a simple proxy for military simulations. The
changes to the dodgeball environment allowed us to test
our main argument: a waypoint-based navigation system
can assist in speeding up MARL experiments with het-
erogeneous entities without compromising performance in
military simulation-like environments. Waypoints allow for
generating abstractions of an environment accurately rep-



resentative of the terrain, which helps narrow the search
space, thus allowing for faster learning. We also introduce
roles within a team in the modified scenario: each team
has short-range and long-range units; the long-range units
could represent snipers or simply units with longer-range
weaponry. The multi-agent Posthumous Credit Assignment
(MA-POCA) algorithm (Cohen et al. 2021) runs our MARL
experiments with functionality for self-play, enabling the
agents to learn against themselves as equally skilled op-
ponents without any human intervention. Our experiments
demonstrate the effectiveness of waypoint-based models
by running head-to-head matches against models trained
with fine-grained movement systems. In these matches,
waypoint-based models performed significantly better while
learning visibly distinct policies for each role in a team.

After providing a short background, we introduce our
waypoint-based movement system. We then give the details
of our proof-of-concept scenarios and discuss our experi-
mentation results and findings. We conclude with the poten-
tial implications of waypoint-based movement systems for
military training simulations.

Background
Many state-of-the-art MARL algorithms utilize an actor-
critic approach (Konda and Tsitsiklis 1999). In this ap-
proach, during training time, a central critic can observe
all the actors (agents) and their rewards. As a result, it
can inform individual agent policies, potentially yielding a
learned consensus in cooperative tasks (Lowe et al. 2017).
For example, modifications to the popular on-policy sin-
gle agent Proximal Policy Optimization (PPO) (Schulman
et al. 2017) algorithm for multi-agent settings under actor-
critic paradigm can be surprisingly effective (Yu et al. 2022).
Multi-agent Deep Deterministic Policy Gradient (MAD-
DPG)(Lowe et al. 2017), which is a multi-agent algorithm
by design, delivers excellent results for toy problems like
predator-prey, cooperative navigation, and physical decep-
tion. Counterfactual multi-agent policy gradient (COMA)
(Foerster et al. 2018) is another actor-critic architecture that
tackles the challenge of multi-agent credit assignment in
cooperative settings with a unique shared reward through
counterfactuals.

Multi-agent Posthumous Credit Assignment (MA-
POCA)(Cohen et al. 2021) extends COMA via attention to
better handle the credit assignment with terminated agents
in training episodes. Before MA-POCA, the most common
solution for eliminated agents was to account for the
maximum number of agents and place the inactive agents in
an absorbing state, allowing for reward to propagate back to
eliminated agents. MA-POCA approaches the posthumous
credit assignment problem via attention rather than a
fully connected neural network, avoiding the need for any
absorbing state while accurately quantifying an individual’s
contribution to the team’s outcome. MA-POCA performed
better than PPO and COMA in various cooperative envi-
ronments, and the margin was most significant in scenarios
that added or removed agents during a simulation. These
results are auspicious for MARL experiments with military

training scenarios, where agent elimination is prevalent and
self-sacrificing behavior can benefit the team’s outcome.

Waypoints
We developed an automatic waypoint generation system to
set up the waypoint-based movement graph for the terrain
used in a scenario. This system utilizes a connected mesh
of waypoints deployed on geo-specific and basic Unity ter-
rains, even though the examples used in this paper are all
simple Unity terrains. Before deploying the waypoints, we
create a NavMesh for the terrain with the constraints such
that the agent cannot ascend steep slopes. The action space
used in our experiments includes choosing which of 8 adja-
cent waypoints (cardinal directions and diagonals) to move
to. We laid out a grid one waypoint at a time, moving from
the southwest corner to the northeast corner and assigning
connections to any waypoints in the southeast, south, south-
west, and east directions. When a waypoint is visited, the
environment attempts to create adjacent waypoints in any
direction that does not have one at a parameterized distance.
Even though we generate waypoints for the entire grid, each
generated waypoint and edge is marked either valid or in-
valid. A waypoint is marked invalid if there is no proper
navmesh position at that location. An edge is marked in-
valid if there is no good path on the navmesh to get to that
waypoint, the waypoints are too far apart vertically, or the
path is far longer than the Euclidean distance between the
waypoints. Our RL experiments will utilize the generated
waypoint-based movement graph, and if an edge or way-
point is marked invalid, the action masking will prune the
associated action. Our experiments treat all edges as equidis-
tant, although the diagonal edges are slightly longer. Figure
1 depicts the waypoint placement.

Figure 1: Waypoint placement

We compared the performance of the waypoint and non-
waypoint agents in this paper, and the main difference be-
tween them is their action spaces. Non-waypoint agents use
fine-grained actions along with a branch to adjust their ro-
tation as defined in the original dodgeball scenario. How-
ever, we removed the dash mechanic, and dashes are not



part of the action spaces for either agent type. For move-
ments, the non-waypoint-based agents use the original im-
plementation, which features two fine-grained branches rep-
resenting movement along the X and Z directions. On the
other hand, our waypoint-based agents use one discrete ac-
tion branch consisting of 9 possible actions. Eight of these
actions correspond to the eight cardinal directions, and the
ninth is for standing still. As stated earlier, movement ac-
tions are masked between waypoints when one or more di-
rections are inaccessible, reducing the search space without
affecting gameplay.

Environment
Unity’s original dodgeball environment features a flat ter-
rain (Berges et al. 2021) where agents cooperatively bat-
tle against the opposing team by picking up and throwing
dodgeballs to eliminate opponents. To make this environ-
ment akin to a military simulation, we iteratively adapted it
to fit our needs. First, we added hills and obstacles for sim-
ilarity to geo-specific terrains. Such a change required us to
build functionality for shooting in three dimensions. To ad-
dress this, we added additional ray casts to expand from two
to three dimensions of observations. We also incorporated
infinite ammunition so agents would not be required to lo-
cate and pick up dodgeballs, only focusing on the combat
aspects of the dodgeball scenario. We generated two sizes
of environments to introduce varying levels of spatial com-
plexity. The smaller of the two is an approximately 45x50
meter environment with a hill in the middle. The larger of
the two is around 45x100 meters, with the same hill in the
center of the arena and two additional smaller but taller hills
on either end. Furthermore, we introduced two different ob-
stacle densities for each environment size: sparse and dense.
Figure 2 shows these four environment combinations with
and without waypoint placements.

Simple Combat Scenarios with Heterogeneous
Units

Military scenarios often include role-based strategy; snipers
are more advantageous from long range, infantry prefer
close range, and other units could have different advantages
and disadvantages. Standard MARL experiments dictate ho-
mogeneous units for efficient training, but training hetero-
geneous units is essential for practical virtual military train-
ing scenarios to yield different types of behavior based on
each agent’s available weaponry. In this effort, we imple-
mented long and short-range units with identical policy ar-
chitectures to train long and short-range units simultane-
ously. Such a change increases training time and complexity
since it enables a more complex strategy, and each policy
receives half as much training as it would have if all agents
used the same policy. Nevertheless, we found it worthwhile
to explore these possibilities, so we tuned the parameters to
fit each type of unit’s intended role. In our setup, long-range
units have increased ray cast range, targeting range, and pro-
jectile velocity, but they could shoot less frequently than
their short-range comrades in the case of the large arena.

Our modified dodgeball scenarios consist of two teams of
four units, each comprised of two short-range and two long-
range units. We used two environments of different sizes and
terrains and tested each with two different obstacle densities,
as seen in Figure 2. The agents’ observation spaces include:
(1) The cooldown time before they can use another projec-
tile; (2) The proportion of remaining hit points relative to
their initial two hit points; (3) The agent’s current direc-
tion and velocity; and (4) Raycasts which detect obstacles
or other agents spanning 200 degrees horizontally and 60
degrees vertically. Furthermore, each agent can be hit twice
before being eliminated.

This limited information and lack of deterministic behav-
ior ensure all behavior is learned and based only on local
observations. To encourage positional strategies and reduce
the complexity of the simulation, we implemented automatic
targeting so that the models need not learn the complex task
of accurately shooting their opponents. Our implementation
only targets units less than 45 degrees horizontally from the
direction the agent is facing. When multiple enemies are in
this range, the target is the one that is closest to the agent’s
facing direction. We found this to significantly reduce train-
ing time compared to allowing agents to pick the angle of
their shots. Parameters that differed between roles and envi-
ronment sizes included ray-cast length, maximum targeting
distance, fire rate, and projectile velocity.

Experiment Design and Results
We set up simple four vs. four training symmetrical scenar-
ios with our waypoint-based movement system and the stan-
dard Unity dodgeball fine-grained movement system. We
ran each scenario on four different environment configura-
tions, as shown in Figure 2. We allowed all experiments to
run for 20 million training steps to compare their learning di-
rectly. The long-range units’ parameters were representative
of a sniper-like role. Both long-range and short-range units
were trained using the same reward system. The reward for
landing a hit on an enemy unit was 0.1, and a linearly de-
creasing reward was given to the winning team, reflecting
the proportion of steps remaining to encourage faster victo-
ries. The losing team was penalized a -1 reward regardless
of time.

Furthermore, we tracked the agents’ ELO scores as a
learning metric popularized in (Silver et al. 2017). ELO
score represents the relative skill of the agents compared to
previous versions of themselves. A 100-point difference in
ELO would signify a 64% win rate, and a 200-point dif-
ference in ELO represents a 76% win rate when measured
against the less skilled version of the agent. Self-play makes
ELO a good indicator of learning in MARL environments.
As can be seen in Figures 3 and 4, ELO scores for the
waypoint-based movement systems increase more rapidly
and converge at a significantly higher value for both long-
range and short-range units.

We also tested the waypoint-based agents against their
fine-grained moving counterparts for a more direct com-
parison in head-to-head matches. To have both types of
agents move in the same environment, we lifted the way-
point constraints from the models trained with a waypoint-



Figure 2: Environments used in our experiments:(a) small environment with sparse obstacles; (b) large environment with sparse
obstacles; (c) small environment with dense obstacles; (d) large environment with dense obstacles. (a) and (d) show the waypoint
placements for small and large environments.

based movement system, leaving them with nine discrete
movement actions and the ability to change directions at any
point. Since we removed the assumptions of turn-based way-
point movements, the head-to-head evaluation setting was
slightly different than the training setting for the waypoint-
based movement models. Such a difference is a disadvan-
tage for waypoint-based models. Still, as shown in Figure
5, waypoint-based systems performed better than their fine-
grained movement counterparts over 100 evaluations in each
of the four scenarios. So, no matter the evaluation condition,
the waypoint-based movement systems learned robust and
high-performing behavior models for our test scenarios.

Discussion
Complex military environments present significant chal-
lenges for MARL methods since they can be stochastic, par-
tially observable, non-stationary, doctrine-based, and role-
based. MARL experiments require heavy computation, de-
manding substantial computational resources and making

extensive MARL experiments elusive for many researchers.
This paper shows how waypoint-based movement systems
could address some of these challenges. A waypoint-based
movement system could help speed up learning in MARL
experiments, and learned policies are robust enough even
when they are transferred back to the original action space.
Our automatic waypoint generation works with geo-specific
terrains, making MARL experiments on realistic terrains
more accessible. Furthermore, it creates a foundation for fur-
ther assumptions to be made based on a project’s unique de-
sign and needs. For example, the waypoint-based movement
graphs could provide a foundation for leveraging simpler
graph-based environments, e.g., in Python, giving new op-
portunities for even faster training of behavior policies and
transferring them back to higher fidelity environments for
fine-tuning.

We found that, on average, waypoint movement systems
progress in ELO rating with fewer steps than their fine-
grained movement counterparts. ELO rating is a powerful



Figure 3: Short-range units ELO score progression during
training in large environment for waypoint-based and fine-
grained (continuous) settings

metric for learning, but considering the differences between
the two movement systems, it may be slightly biased. Con-
sequently, we also tested the waypoint system in a Unity en-
vironment to see whether or not a simplified movement sys-
tem would learn sufficiently good policies to compete with
agents using standard fine-grained movement. The ability to
transfer policies back into the original action space could
be critical for specific applications, and our results showed
that despite competing under conditions different from those
during training, the waypoint-based agents could easily out-
compete the agents trained using fine-grained movement.

Training units with different capabilities is a critical part
of military simulations. Waypoint-based movement systems
also assist in speeding up the convergence of MARL ex-
periments with heterogeneous units. Our experiments show
that we can learn effective policies simultaneously for units
with varying capabilities, e.g., long- and short-range units, in
our proof-of-concept scenarios. Unity’s ML-Agents frame-
work makes the implementation of training two separate
policies simultaneously simple and effective. We found that
parameter changes were sufficient to yield different behav-
iors, and no added functionality was necessary to differenti-
ate between the roles. The behavioral differences between
the two roles were consistent between the waypoint and
non-waypoint environments. In our experiments, long-range
units tended to hold back and engage in long-range com-
bat, whereas the short-range units utilized a more aggressive
short-range style. We believe adding different functionality
between the two roles could further exacerbate the differ-
ences in learned behavior.

Even though our results are promising, it is worth not-
ing that this paper did not delve into further abstractions
for even faster experiments, which will largely depend on
the nuances of each project. Our focus was primarily on
speeding up experiments in realistic environments, poten-
tially with geo-specific terrains. However, our results lead us
to believe that such abstractions could significantly reduce

Figure 4: Long-range units ELO score progression during
training in large arena for waypoint-based and fine-grained
(continuous) settings

Figure 5: Waypoint-based vs fine-grained (continuous) wins
in head-to-head matches

computational requirements to run similar experiments, and
waypoints could provide a strong foundation for creating
high-speed abstract simulation environments. Further re-
search could investigate such abstractions in military sim-
ulations and seek to understand what degrees of abstrac-
tion retain the ability to learn policies that function in their
non-abstract counterpart. For example, equation-based cal-
culations could be leveraged rather than firing projectiles, or
graph-based representations could help integrate recent ar-
chitectures, such as graph transformers, into machine learn-
ing for multi-agent systems.

In future work, we look forward to investigating adding
additional functionality and units, such as vehicles or med-
ical units, to create a broader range of military scenarios.
More importantly, we plan to continue our ongoing efforts
on the effectiveness of abstracted environments for perfor-
mance and their connections to waypoint-based representa-
tions. Such abstractions offer an avenue for faster reinforce-
ment learning, which is crucial for complex systems such as
military training simulations. Reasonable abstractions with
pathways for transfer learning should help narrow the search
space without removing critical strategic components like
cooperative positioning while still allowing the generation
of intelligent behavior in high-fidelity environments.



Conclusion
MARL algorithms offer the opportunity to develop intelli-
gent adaptive teams of synthetic characters, but the chal-
lenges associated with military training scenarios have lim-
ited their development. This paper introduced some simple
combat environments to serve as a proxy for high-fidelity
training scenarios. We found that a waypoint-based system
can narrow the search space without sacrificing the perfor-
mance of the original fine-grained movement environments.
This system is scalable, geo-specific, and accessible. These
preliminary experiments suggest that graph-based abstrac-
tions, represented by the nodes and edges of the automat-
ically generated waypoints, could make complex environ-
ments run fast. An abstract graph-based version of a military
training environment would be less computationally expen-
sive while retaining the crucial positional strategy required
for adaptable intelligent agents. Further research in this di-
rection should make training complex scenarios with rein-
forcement learning more accessible.
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