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Abstract
There is a burgeoning interest in harnessing artificial
intelligence (AI) to enhance patient flow within emer-
gency departments (EDs). However, this advancement
is accompanied by a significant risk: by relying on his-
torical healthcare data, these AI tools may perpetuate
existing systemic biases associated with gender, age,
ethnicity, and socioeconomic status. This paper sur-
veys studies identifying biases in ED data, offering con-
text for concern about these biases. These insights are
valuable for researchers developing AI to optimize ED
workflows while accounting for ethical considerations.

Introduction
Improving patient flow in emergency departments (EDs)
is crucial for reducing crowding and enhancing care qual-
ity. Factors influencing patient flow include department lay-
out, staffing levels, waiting times, investigation turnaround
times, disposition decision delays, exit block, limited in-
patient bed availability, and fluctuations in patient demand
(Ortiz-Barrios and Alfaro-Saiz 2020). There is a growing
interest in utilizing artificial intelligence (AI) to enhance
ED operations (Mueller et al. 2022; Taylor et al. 2022;
Piliuk and Tomforde 2023; Emami and Javanmardi 2023;
Maninchedda et al. 2023). However, integrating AI raises
ethical and legal concerns (van der Stigchel et al. 2023). An-
other crucial consideration is the potential impact of biases
in data and AI methodologies on perpetuating sociodemo-
graphic disparities in patient care. Biases in ED decision-
making remain indeed problematic (Morisod et al. 2021).

We introduce AI-driven patient flow optimization with ex-
amples of recent advancements. Because AI models may in-
herit biases from their training data, potentially exacerbating
health disparities, we survey studies on biases in ED across
stages of the process and discuss potential consequences.

AI-Driven Patient Flow Optimization in ED
AI-driven methods, alongside computer modeling and sim-
ulation tools, have been applied across various aspects of
prehospital settings, emergency medical dispatch, and pa-
tient flow management (Arnaud et al. 2022; Alenany and
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Ait El Cadi 2020; El-Bouri et al. 2021; Wang et al. 2021;
Terning, Brun, and El-Thalji 2022; Shokouh, Mohammadi,
and Yaghoubi 2022; Boonstra and Laven 2022; Rismanchian
et al. 2023). Promising results in forecasting next-day ED
patient arrivals have been observed (Tuominen et al. 2022).

In mental health, AI ranges from administrative task au-
tomation to real-time data analytics supporting clinical de-
cisions (Dawoodbhoy et al. 2021). In radiology depart-
ments, a multi-model approach to forecasting emergency
patient flow demonstrates the efficacy of diverse models
(Zhang et al. 2020b). Additionally, AI’s broader role in
healthcare, like predicting ED patient inflow, aids in early
admissions and resource optimization (Zhou et al. 2023;
Kishore et al. 2023). Integration of genetic algorithms with
deep neural networks emphasizes advanced feature selection
and model accuracy in forecasting (Harrou et al. 2020).

AI-driven tools also assist in emergency triage, prioritiz-
ing patients based on medical urgency to ensure timely and
effective care allocation (Vantu, Vasilescu, and Baicoianu
2023; Defilippo et al. 2023; Mutegeki et al. 2023; Sax et al.
2023; Yu et al. 2022; Gao et al. 2022; Kipourgos et al. 2022;
Sanchez-Salmeron et al. 2022; Cho et al. 2022).

Sociodemographic Disparities in ED
We conducted a non-systematic search in Medline/PubMed,
targeting titles or abstracts. We employed broad terms like
‘bias*’ and ‘emergenc*’ (or related terms such as ‘*equit*’,
‘*equal*’, ‘discrimin*’, or ‘disparit*’), as well as specific
terms like ‘ethnic*’, ‘triage’ or their synonyms. Snowballing
was employed by reviewing papers’ reference lists.

Disparities in Access to Outpatient Care. Territorial
disparities in accessing outpatient care, including infras-
tructure, medical personnel distribution, and concentration
of unfavorable socioeconomic conditions in specific ar-
eas, present a multifaceted challenge. Limited objective ev-
idence exists due to the issue’s complexity. Studies ex-
plore relationships between racial, socioeconomic, or geo-
graphical factors —which are often intertwined— and dif-
ficulty accessing emergency services (Verma et al. 2023;
Wu et al. 2023). Research highlights socially differentiated
pathways to emergency care access, perpetuating health in-
equalities (Morel 2019). Inequity indicators in outpatient
care access link to socioeconomic factors such as insurance



status and social deprivation (Morisod et al. 2021).

Disparities in Emergency Triage. Emergency triage
rapidly categorizes patients based on their condition sever-
ity upon arrival at the ED. A triage nurse assesses vital signs,
medical history, and reason for the visit, assigning a triage
acuity score. External factors like ED location influence
triage decisions (Gorick 2022; Suamchaiyaphum, Jones, and
Markaki 2023). Sociodemographic factors, including eth-
nicity, sex/gender, age, and insurance coverage, also im-
pact mistriage (Zhang et al. 2020a; Peitzman et al. 2023;
Essa et al. 2023; Martin et al. 2023; Fekonja et al. 2023), dis-
proportionately affecting certain groups (Banco et al. 2022).
While age and ethnicity influence prioritization, findings on
sex/gender (Arslanian-Engoren 2000; Onal et al. 2022) are
less conclusive, with other factors interacting. Further anal-
ysis is available in (Avalos et al. 2024).

Disparities in Quality of Emergency Care. Even within
the same triage level, where ’first come, first served’ is the
supposed principle, unexpected behaviors are observed, with
over 10% of consultations not following arrival order, prior-
itizing older individuals and deprioritizing racialized indi-
viduals (Lin et al. 2022). A study found that ethnicity and
insurance status were associated with being passed over by
another patient with the same or lower triage score, with no
such link found with sex (Sangal et al. 2023). Similarly, sig-
nificant disparities in patient flow acceleration/deceleration
based on racial, gender, age, and insurance status were re-
vealed (Sharperson et al. 2023). Patients from more disad-
vantaged areas experienced slightly longer waits during the
ED care pathway (Turner et al. 2022). Additionally, they
noted that disadvantaged individuals received less complex
ED care and were less likely to be admitted for inpatient
care. It was also observed that black patients were less likely
to undergo tests in the ED (Zhang et al. 2020a). Furthermore,
disparities in racial/ethnic and language-based pain manage-
ment in pediatric EDs were identified (Hartford et al. 2022).

Disparities in post-ED follow-up. Although some stud-
ies suggest that women may face disadvantages at various
stages of care, these results do not consistently reach sta-
tistical significance (Onal et al. 2022; Mnatzaganian et al.
2020). (Preciado et al. 2021) demonstrate that women expe-
rience fewer hospitalizations and undergo fewer tests than
men. In this context, disparities in the care of both genders
inadvertently benefit women by preventing unnecessary hos-
pitalizations or cardiac tests. In the specific case of mental
health emergencies, (Han et al. 2023) suggest the possibil-
ity of underestimating the genuineness of suicide attempts
in young females. On the other hand, (Zhang et al. 2020a)
found that black patients were less likely to be admitted to
the hospital and had a higher death rate in the ED and hos-
pital. Some of these findings contrasted with those for His-
panic and Asian patients, who generally received equivalent
or greater ED resources compared to white patients.

Discussion
AI models may inherit biases from their training data, po-
tentially exacerbating health disparities. Particularly, large

language models may exhibit biases aligned with stereo-
types due to under-representation in training data (Kotek,
Dockum, and Sun 2023; Buslon et al. 2023). Through a lit-
erature survey, we identified biases affecting different stages
of a patient’s journey in the ED, potentially influencing AI-
driven patient flow optimization, that could be synthethized
as follows:

• Biases during initial assessment, like triage decisions af-
fected by sociodemographic factors, may create dispari-
ties in patient prioritization. AI algorithms trained on bi-
ased data may perpetuate these patterns, worsening exist-
ing outcome disparities.

• Moreover, biases in diagnostic and treatment decisions
within the ED can impact patient flow. If AI algorithms
do not account for these human errors, they may fail to
accurately predict the demand for diagnostic resources
or treatment pathways, leading to inefficiencies in patient
flow management.

• Biases in disposition decisions, such as admitting patients
to inpatient care, can also have a significant impact. Pa-
tients from disadvantaged backgrounds may be less likely
to be admitted due to biases in clinical assessments or re-
source allocation. Failure to address these biases in AI al-
gorithms may result in inaccurate predictions of the need
for inpatient resources, leading to inefficiencies in bed
management and discharge planning.

The awareness that biases can infiltrate AI systems
through training data, and identifying sensitive points in the
patient journey through the ED, is a crucial first step. That
said, much work remains to ensure that AI systems can ef-
fectively assist ED professionals, all while upholding ethi-
cal standards. Governance overseeing the integration of AI-
driven solutions for patient flow optimization in EDs must
remain vigilant about potential vulnerable points.

Solutions for mitigating biases have emerged (Adam et al.
2022; Thakur et al. 2023), yet using fairness metrics isn’t a
cure-all. The prevailing computer science approach formal-
izes fairness as a mathematical constraint, imposed on AI
decisions to minimize predictive accuracy loss. However,
it relies on oversimplified/unrealistic assumptions, assum-
ing that fairness can be mathematically formalized and con-
sidering only a single axis of discrimination. Additionally,
measuring fairness necessitates access to sensitive data, re-
sulting in incomplete assessment of discrimination effects
(Buyl and De Bie 2024).

Educational computerized approaches involve preventing
bias in medical decision-making, for example, through the
use of serious games (Sader et al. 2021). Another approach
involves a paradigm shift, precisely utilizing AI models to
objectively detect human biases. This would entail using an
AI system to detect outcome differences between patients
based on sociodemographic characteristics that cannot oth-
erwise be medically explained (Avalos et al. 2024).
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