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Abstract
With the widespread availability of adware masquerading as
useful apps, there is an increasing need for robust security
measures to identify adware. The identification of adware as
a malware is a challenging task, as it often appears benign
despite its malicious intent in the background. In this study,
we propose an approach to classify adware on Android de-
vices using data from multiple modalities. The focus is par-
ticularly on the classification of Airpush and Dowgin ad-
ware. Our proposed method uses both tabular and grayscale
image data, and a feedforward neural network architecture
to build a multimodal deep learning model that achieves a
95% prediction accuracy. Additionally, we incorporate Ex-
plainable AI (XAI) to enhance the interpretability of the re-
sults. The efficiency of our proposed approach is showcased
through its ability to classify adware instances in an explain-
able manner, highlighting its significance not only in adware
classification but also in fortifying against the evolving chal-
lenges posed by adware.

Introduction
Adware, often disguised as harmless software, poses a sig-
nificant threat by infiltrating popular apps and compromis-
ing user privacy and security. With over 200 widely-used
Android applications containing adware, millions of users
are affected globally. Addressing this multifaceted issue is
crucial to safeguarding users and maintaining the digital
ecosystem integrity as mobile devices become increasingly
integrated into our daily life. Studies on Android malware
detection using machine learning approaches can be broadly
categorized into two methodologies: static analysis and dy-
namic analysis. In static analysis, researchers extract de-
tailed information from the Android Package Kit (APK) in-
stallation file. This includes insights into the app’s mani-
fest, permissions, Application Programming Interface (API)
calls, intents, and more. On the contrary, dynamic analy-
sis focuses on monitoring an application’s behavior during
execution, examining aspects such as logcat errors, shared
memory usage, system calls, and process activity within a
controlled environment or sandbox. Previous studies pro-
posed several Android malware detection methods using
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deep learning and ensemble learning (Deldar and Abadi
2023) (Summaira et al. 2021). Malware data can be pre-
sented in terms of different modalities such as text, code,
images, and tabular data. This multifaceted nature of mal-
ware data requires an approach that can handle and process
various modalities efficiently. There has been various studies
using multimodal learning methods on different modalities
of data. For instance, (Kwak, Jung, and Lee 2023) works
with text, images, and code and uses multimodal deep learn-
ing for issue report classification. Similarly, (Summaira et al.
2021) uses multimodal deep learning and ensemble learning
in their work.

Our study introduces a pioneering multimodal ap-
proach for adware classification, merging tabular data with
grayscale image data. This integration captures both func-
tional aspects and visual representations of apps in memory.
Multimodal methods, combining tabular and image data,
provide better predictions by capturing both behavior and
visual patterns. However, they require more complex setups
and resources. On the other hand, simpler unimodal meth-
ods need fewer resources and are suitable for limited setups.
Despite challenges, we opted for the more comprehensive
multimodal approach, though further research is necessary
to fully leverage its potentials.Our approach achieves a 95%
prediction accuracy in adware classification. Moreover, we
go beyond classification by incorporating explainable AI to
enhance result interpretability. This fosters a deeper under-
standing of the classification process for future research and
empowers end-users with insights into flagged applications.
Our contributions can be summarized as follows:

• Integration of data from multiple sources: tabular adware
data from the CIC-AndMal-2020 (Keyes et al. 2021) (Ra-
hali et al. 2020) and grayscale image adware data from
(Iadarola et al. 2021)

• Evaluation of the multimodal model’s effectiveness
through comparison with unimodal image and tabular
data models.

• Implementation of explainable AI techniques to elucidate
the classification process and provide insights into under-
lying threats.



Related Works

(Liu et al. 2020) offers a comprehensive overview of ma-
chine learning-based malware detection methods for An-
droid platforms, covering static, dynamic, and hybrid anal-
ysis techniques. Static analysis examines app characteristics
like permissions, code structure, and API calls (Lou et al.
2019). However, adware is always evolving. Sophisticated
variants dynamically inject malicious code or alter behav-
ior at runtime, rendering static analysis blind to their true
nature (Gao et al. 2019). To overcome this limitation, later
studies have turned their focus to dynamic data. Dynamic
analysis occurs when the app is running (Yerima, Alzay-
laee, and Sezer 2019) (Ndagi and Alhassan 2019), employ-
ing behavioral analysis, and monitoring runtime app actions
to identify adware-related behavior. (Kumar et al. 2019)
delves into the realm of network traffic generated by adware
by integrating diverse data modalities. Although their fo-
cus was broader, the foundational principles of multimodal
learning method that they proposed is important to the chal-
lenges posed by adware. By identifying unique signatures
and communication patterns, they demonstrated the poten-
tial of network-based detection in distinguishing malware
from benign apps. Recognizing the strengths of both ap-
proaches, (Lu et al. 2020) developed a hybrid model, com-
bining static features with dynamic data like API calls, net-
work traffic, and system calls. Their promising results il-
lustrated the effectiveness of harnessing both static and dy-
namic analysis. There has been several studies on multi-
modal learning using deep learning for malware detection.

In (Deldar and Abadi 2023), the authors propose a tax-
onomy categorizing zero-day resistant, deep malware detec-
tion, and classification techniques into unsupervised, semi-
supervised, few-shot, and adversarial resistant categories. In
a different study, (Zhang, Zhao, and Wang 2021) introduces
SusTriage, a bug report triage method that combines multi-
modal deep learning and ensemble learning to achieve high
prediction performance and at the same time maintain long-
term sustainability of open source communities. Later on,
(Summaira et al. 2021) explored the importance of multi-
modal deep learning to improve upon information process-
ing by integrating various modalities such as image, video,
text, audio, body gestures, facial expressions, and physio-
logical signals.

More recently, (Kwak, Jung, and Lee 2023) proposed
a novel multimodal model incorporating text, images, and
code as its modalities and achieved better performance com-
pared to its prior studies. They used a text-based Convolu-
tional Neural Network (CNN) unimodal model, which were
then fused together to enhance issue classification accuracy.
In a similar study, (Audebert et al. 2020) used a multimodal
neural network integrating image and word embeddings ex-
tracted from OCR-generated noisy text. Their proposed ap-
proach significantly improved classification accuracy on the
Tobacco3482 and RVL-CDIP datasets. In a different study,
(Iadarola et al. 2021) provided a valuable framework for de-
signing interpretable models in the context of mobile mal-
ware detection.

Figure 1: Proposed architecture

Methodology
Overview
Our proposed approach (see Fig.1) uses multimodal deep
learning on image and tabular dataset. Additionally, we im-
plemented explainable AI techniques to help understand de-
cisions depicted by the most contributing features.We eval-
uated the unimodal tabular data on eight distinct machine-
learning algorithms namely, K-Nearest Neighbors (KNN),
Decision Trees, Logistic Regression, Naive Bayes, Ran-
dom Forest, Extreme Gradient Boosting (XGBoost), Sup-
port Vector Machine (SVM) with a linear kernel, and SVM
with a Radial Basis Function (RBF) kernel. Similarly, we
evaluated the image data on a custom CNN Architecture .
For the fusion of the data, we used two separate neural net-
work models and then concatenated the output layers. Af-
terwards, we trained the concatenated features on a feedfor-
ward neural network model with fully-connected layers.For
interpretability of the unimodal tabular model, we use Shap-
ley Additive Explanations (SHAP) to display feature impor-
tance. We also implemented Gradient-weighted Class Ac-
tivation Mapping (GradCAM) to understand how the uni-
modal image model classifies grayscale adware images.

Dataset
We utilized public datasets of different modalities (image
and tabular) to train and evaluate our adware classification
model. The employed datasets include CCCS-CIC-AndMal-
2020 (Keyes et al. 2021) (Rahali et al. 2020) and An-
droid grayscale image dataset collected in (Iadarola et al.
2021).The CCCS-CIC-AndMal-2020 dataset, publicly re-
leased in 2020, is a collaborative effort of the Canadian Cen-
tre for Cyber Security and the Canadian Institute for Cy-
bersecurity. Here we use the malware category- Adware.
We specifically leverage features extracted from the Airpush
and Dowgin families, known for their adware characteris-
tics. Building upon the research presented in (Iadarola et al.
2021), we incorporate and processed image data in this re-
search. They are Android malware grayscale images of Air-
push and Dowgin malware families. We utilized two sepa-
rate datasets due to the lack of a single, cohesive dataset of
both types of data. We acknowledge that this is a limitation
of our study, as combining data from different sources can



introduce inconsistencies. To mitigate this, we ensured that
both data sources were aligned on their labels.

Feature Extraction
The tabular data contained a total of 2927 samples which
were split as: 2017 samples in the Airpush class and 910
samples in Dowgin class. We excluded the ’Hash’ and ’Cat-
egory’ columns from the datasets due to their lack of rele-
vance to the model. We used Scikit-Learn’s Standard Scaler
to standardize the tabular data. Note that there are no miss-
ing values in this dataset. Finally, we applied a OneHotEn-
coder on our label as a standard data pre-processing tech-
nique. For the image data, given that the image sizes are
variable, we standardized the image dataset by resizing each
image. The input images were resized to dimensions (258
x 258). Subsequently, a normalization process was applied,
and the images were fed into a CNN based model. For Fea-
ture Extraction from the CIC-AndMal-2020 tabular dataset
(Keyes et al. 2021) (Rahali et al. 2020), we used Recursive
Feature Elimination (RFE) along with GridSearch. RFE is a
feature selection method that fits a model and removes the
weakest feature (or features) until the specified number of
features is reached. We performed RFE and GridSearch with
four different classifiers: Random Forest, Decision Tree, Lo-
gistic Regression, and Adaptive Boosting (Adaboost). These
classifiers provide a good mix of different types of models,
from tree-based models (Random Forest and Decision Tree)
to linear models (Logistic Regression) and ensemble meth-
ods (Adaboost). For each classifier, we defined a set of hy-
perparameters to be tuned using GridSearch. GridSearch is
a method that performs hyperparameter tuning in an exhaus-
tive manner, searching over all possible combinations of the
provided hyperparameters. After performing RFE and Grid-
Search, we obtained a list of 45 common features across all
classifiers.

Models
UniModal Model: Following feature extraction of the
tabular dataset, we used the 8 different classifiers listed ear-
lier to train our model.The results are presented in Table 1
in terms of accuracy, recall, precision and f1 score. For the
image data, we used a custom CNN architecture on the pre-
processed image data (Iadarola et al. 2021). The CNN archi-
tecture consisted of three convolutional layers with a kernel
size of (5, 5) followed by the ReLU activation function. We
applied a max-pooling operation twice with a kernel size of
(5, 5). After the final max-pooling layer, the output is passed
to a fully connected layer. Finally, it extracts the image fea-
tures in a feature size consistent with the feature size of the
tabular data. We used a softmax activation function for the
output layer. This model was trained for 10 epochs with a
batch size of 32. As a result, we achieved a 97.6% prediction
accuracy on the training set and 95.3% prediction accuracy
on the test set. We achieved a 97.79%, 97.9%, and 97.8% on
precision, recall and F-1 score respectively.The training loss
and accuracy, as well as the validation loss and accuracy for
each epoch, were recorded. The training loss provides an in-
dication of how well the model is learning from the training
data, while the validation loss gives an insight into how well

Figure 2: SHAP values of the most important 20 features of
the CIC-AndMal-2020 pipeline

the model generalizes to unseen data. Ideally, both losses
should decrease over time, indicating that the model is learn-
ing effectively. In our case, the training loss decreased from
0.6832 in the first epoch to 0.2157 in the tenth epoch. Sim-
ilarly, the validation loss decreased from 0.6759 in the first
epoch to 0.2047 in the tenth epoch.

Multimodal Model: For preprocessing, we sorted both
the image and tabular data based on their labels to ensure
consistency. Due to the presence of a larger amount of im-
age data compared to the tabular data, we took a random
subset of the training and test data so we have an equal
amount for our model. The images were resized to a standard
size of 128 x 128. The multimodal model has two neural
network branches. The tabular data was processed through
a dense layer with 32 units and a ReLU activation func-
tion. The image data was processed through a convolutional
layer with 16 filters of size 3x3 and a ReLU activation func-
tion, followed by a flattening layer. The outputs of these two
branches were then concatenated and passed through a com-
mon dense layer with 64 units and a ReLU activation func-
tion. The final output layer uses a sigmoid activation func-
tion for binary classification. The model was compiled with
the Adam optimizer and binary cross-entropy loss function.
The batch size was set to 16 and the model was trained for 10
epochs. These hyperparameters were chosen based on com-
mon practices in the field. However, we acknowledge that
further hyperparameter tuning could potentially improve the
model’s performance. The same preprocessing applied to the
training data was also applied to the test data.

Results and Discussion
For the unimodal tabular data, we used
SHAP for explainability and from Figure
2 we see that the features: API Network -
com.android.okhttp.internal.huc.HttpURLConnectionImpl -



getInputStream, API DeviceInfo an-
droid.telephony.TelephonyManager getSubscriberId,
and API Binder android.app.ActivityThread -
handleReceiver had a major impact on
the classification results. API Network -
com.android.okhttp.internal.huc.HttpURLConnectionImpl -
getInputStream represents the use of an API to retrieve
data from a URL. Adware often needs to connect to the
internet to download advertisements or send user data to
a server. Therefore, the frequent use of this API could
be a strong indicator of adware. API DeviceInfo an-
droid.telephony.TelephonyManager getSubscriberId repre-
sents the retrieval of the subscriber ID, which is a unique
identifier for each user in the mobile network. Adware often
collects personal information for malicious purposes, so the
use of this API could suggest an attempt to gather sensitive
user data. API Binder android.app.ActivityThread han-
dleReceiver represents the handling of broadcast receivers
in Android, which are used to respond to system-wide
broadcast announcements. Adware might use this to trigger
actions upon certain events, such as network changes or
system boot. Among the tabular models, Random Forest
and XGBoost performed the best both with 98% prediction
accuracies while Naive Bayes performed the worst with
an 89% prediction accuracy. Applying GradCAM to our
image model provides insights into how the model learns
its classification process. In Figure 3, we present the
visualization of a convolutional layer depicting an image
labeled ”Airpush” through a heatmap and GradCAM image.
Despite the inherent difficulty in distinguishing grayscale
images, our comparison of the heatmaps and GradCAM
images pertaining to the Dowgin adware family reveals
the efficacy of GradCAM in discerning subtle distinctions.
Specifically, as we traverse through various convolutional
layers, the GradCAM consistently delineates the grayscale
images with greater clarity, particularly in the grey-on-black
instances. This observation suggests that our model learns
in an interpretable manner, effectively highlighting the
characteristics of the Airpush grayscale image. We evalu-
ated our multimodal deep learning model by comparing it
with unimodal model for image and unimodal model for
tabular dataset. For the unimodal image model, we applied
a CNN architecture and achieve 97.6% accuracy which is
2.6% higher than our multimodal model, where it achieves
95% accuracy. The multimodal model’s performance was
evaluated using both training loss and accuracy. Ideally, the
loss should decrease over time, indicating that the model is
learning effectively. In our case, the training loss decreased
from 5.6638 in the first epoch to 0.6295 in the twentieth
epoch. We chose to distinguish between two families of
adware, Airpush and Dowgin because different families
of adware exhibit different behaviors and characteristics.
By distinguishing between different families, we can gain
more understanding of the threats posed by each family
and develop more targeted mitigation strategies.Airpush
and Dowgin were chosen as the adware samples because
they represent two common and distinct types of adware.
Airpush is known for aggressive advertising tactics and has
been associated with unwanted pop-up ads, while Dowgin

Classifier Class Pre-
cision Recall F1

Score
Accu-
racy

XGBoost Airpush 98% 99% 99% 98%
Dowgin 98% 95% 97%

Decision
Tree

Airpush 96% 97% 96% 95%
Dowgin 92% 90% 91%

Logistic
Regression

Airpush 96% 96% 96% 94%
Dowgin 90% 92% 91%

KNN Airpush 96% 99% 97% 96%
Dowgin 98% 90% 94%

SVM with
RBF

Kernel
Airpush 95% 97% 96% 95%

Dowgin 92% 89% 91%
SVM with

Linear
Kernel

Airpush 95% 95% 95% 94%

Dowgin 89% 89% 89%
Random
Forest

Airpush 98% 99% 99% 98%
Dowgin 98% 96% 97%

Naive
Bayes

Airpush 88% 97% 92% 89%
Dowgin 91% 71% 79%

Table 1: Classification Matrix for Machine Learning classi-
fiers on CIC-AndMal-2020 tabular dataset

Figure 3: GradCAM on convolutional layer of Image data
model. Left: Heatmap. Right: GradCAM image

is known for being bundled with seemingly legitimate apps
and can be harder to detect.

Conclusion
Our multimodal deep learning approach presents a promis-
ing option for adware classification, using the complemen-
tary strengths of image and tabular data. This approach al-
lows the model to learn more complex patterns that might
not be apparent when using either type of data alone. The
combination of neural networks and thorough data pre-
processing contributed to the model’s performance and ro-
bustness. Due to the inherent differences between the two
data sources, future research could benefit from the develop-
ment and use of a unified dataset that integrates tabular and
image data from a single source. Future work could also in-
vestigate the benefits of distinguishing between adware and
non-adware, which could provide a broader perspective on
the threat landscape.
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