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Abstract
Despite considerable progress in malicious software foren-
sics, the challenge of accurate attribution, formulation of ap-
propriate response and mitigation strategies, and ensuring the
interpretability of deep learning methods persists. While be-
ing less flexible and robust to noise compared to deep learn-
ing models, Knowledge Graphs are natively developed to be
explainable and are a promising solution for exploring new
features and relations, and enhancing understandability of
decisions. In this work, we aim to develop an explainable
malware classifier which can classify PE executable as ma-
lign or benign, by infusing external knowledge using Knowl-
edge Graph (KG). We enrich our Knowledge Graph using
MITRE Attack ontology (i.e., domain knowledge) and EM-
BER dataset and utilize Graph2Vec algorithm to embed KG
knowledge into our classifier. We found that our classifier
yields satisfactory results while maintaining a high level of
explainability.

Introduction
The relentless evolution and increasing sophistication of
malware in the cybersecurity landscape continually chal-
lenge the development of effective defense mechanisms.
Traditional black-box models often fall short in providing
transparent and understandable explanations for their de-
cisions, necessitating innovative approaches to bridge this
gap. Our research investigates the synergistic integration of
Knowledge Graphs (KGs) and Explainable Artificial Intel-
ligence (XAI) to conceive a Knowledge-Infused Malware
Classifier.

Cybersecurity research has consistently highlighted the
critical role of transparent and interpretable models in en-
hancing interpretability and trust of decision from it. To-
wards tackling this challenge, the MITRE Corporation’s
ATT&CK (Adversarial Tactics, Techniques, and Common
Knowledge) framework (Roy et al. 2023) emerges as a foun-
dational resource. MITRE ATT&CK provides a comprehen-
sive and structured ontology of cyber threats, mapping out
the tactics, techniques, and procedures (TTPs) employed
by adversaries. By incorporating external knowledge, our
Knowledge-Infused Malware Classifier gains a deeper un-
derstanding of the diverse strategies employed by malicious
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entities, enhancing its interpretability and performance in
real-world scenarios.

To train and evaluate the robustness of our classifier, we
utilize the EMBER dataset (Anderson and Roth 2018), a
widely recognized and extensively studied repository of di-
verse malware samples. The EMBER dataset encompasses
a diverse set of features extracted from a wide range of ma-
licious and benign entities. Leveraging this dataset for train-
ing allows our model to generalize effectively across various
malware types, ensuring its adaptability to emerging threats.

The Graph2Vec (Narayanan et al. 2017) algorithm serves
as a cornerstone in our methodology, facilitating the embed-
ding of knowledge from the MITRE ATT&CK framework
into our classifier. Graph2Vec, a graph embedding tech-
nique, captures the structural information present in Knowl-
edge Graphs, enabling the infusion of explicit knowledge
into the decision-making process of the classifier. The re-
sulting model not only excels in its ability to distinguish be-
tween malign and benign entities but also provides human-
comprehensible explanations for its decisions, aligning with
the growing need for transparency and accountability in the
ever-evolving landscape of cybersecurity.

In summary, this research contributes to the advancement
of malware classification by integrating Knowledge Graphs
and Explainable AI. The incorporation of external knowl-
edge from the MITRE ATT&CK framework and the uti-
lization of the EMBER dataset enhance the interpretabil-
ity and generalizability of our Knowledge-Infused Malware
classifier. The subsequent sections of this paper delve into
the background work, detailed methodology, experimen-
tal setup, and results, providing a comprehensive explo-
ration of the contributions and implications of our approach
in addressing the challenges posed by contemporary cyber
threats.

Background
The digital era has brought unprecedented advancements in
technology, transforming the way individuals, businesses,
and governments operate. Alongside these innovations,
however, has emerged a formidable and dynamic threat land-
scape characterized by the proliferation of sophisticated and
evolving malware. In response, the field of cybersecurity has
become a paramount concern, with a constant need for inno-
vative strategies to detect, analyze, and mitigate the impact



Figure 1: Software node (Light Blue) from MITRE Ontol-
ogy associated with techniques used (Light Green), Alias
(Red) and respective cyber Group (Beige)

of malicious software.
The traditional reliance on signature-based detection

methods is increasingly insufficient as malware authors em-
ploy polymorphic and obfuscation techniques to evade de-
tection. As a result, cybersecurity researchers and practi-
tioners have shifted towards leveraging advanced machine
learning models to keep pace with the dynamic nature of
malware. However, the widespread use of complex black-
box models poses a significant challenge, as their decision-
making processes lack transparency and interpretability, hin-
dering the ability to understand and trust their outputs.

The importance of transparent and interpretable models
in cybersecurity has been emphasized by numerous studies
(Islam et al. 2019). Transparent models not only foster trust
among users but also enable collaboration and knowledge-
sharing within the cybersecurity community. Interpretable
models are essential for understanding the rationale behind
decisions, aiding in the identification of false positives and
facilitating the refinement of detection strategies.

Knowledge Graphs (KGs) have proven to be powerful
tools for representing and organizing complex relationships
within a domain. KGs encode knowledge in a structured for-
mat, connecting entities through defined relationships, al-
lowing for a rich representation of semantic information.
The integration of KGs into machine learning models has
shown promise in enhancing interpretability by incorporat-
ing explicit knowledge. This synergy between KGs and ma-
chine learning has been explored in various domains, includ-
ing natural language processing and cybersecurity (Sikos
2023), demonstrating the potential for improving model
transparency and performance.

Explainable Artificial Intelligence (XAI) is another key
area of research that seeks to demystify complex machine
learning models and make their decisions more understand-
able to end-users. Numerous XAI techniques, such as LIME
(Local Interpretable Model-agnostic Explanations) (Zafar
and Khan 2021) and SHAP (SHapley Additive exPlanations)
(Lundberg and Lee 2017), have been developed to provide
post-hoc explanations for black-box models. These tech-

Figure 2: Each data point(Blue) associated with its sections
(Yellow) and each section associated with it’s properties
(Green)

niques generate simplified and human-comprehensible ex-
planations for model predictions, contributing to the overall
transparency of the decision-making process.

The research presented in this paper aims to address the
challenges posed by evolving malware threats through the
integration of Knowledge Graphs and Explainable AI. By
leveraging external knowledge from the MITRE ATT&CK
framework and employing the EMBER dataset, our ap-
proach seeks to enhance the interpretability and performance
of malware classification models.

Methodology
The proposed approach consists of three major stages: A)
Data Integration and Knowledge Graph Construction, B)
Graph Representation Learning, and C) Building the Mal-
ware Classifier:

1. Data Integration and Knowledge Graph
Construction
Our methodology begins with the integration of two dis-
tinct datasets – the MITRE dataset and the Ember dataset.
Simultaneously, the Ember dataset, focused on executable
files, is ingested into the knowledge graph, capturing struc-
tural elements such as sections, imports, exports, and data
directories. The Neo4j Graph Data Science library aids in
predicting new relationships between nodes, enhancing the
inter-connectedness of our Knowledge Graph.

1.1 MITRE Dataset Integration The MITRE dataset,
known for its comprehensive cyber threat intelligence, is
seamlessly integrated into a Neo4j knowledge graph. Enti-
ties representing Groups, Software, Tools, and Techniques
form the backbone of our graph, interconnected to capture
contextual dependencies as seen in Figure 1. This process
captures not only individual entities but also the intricate re-
lationships among Groups, Software, Tools, and Techniques.
The resulting Knowledge Graph becomes a comprehensive
repository of cyber threat intelligence.



Figure 3: Software (Light Blue) imported (Grey) by one of
the executables in EMBER dataset linked by the link predic-
tion algorithm

1.2 Ember Dataset Integration The seamless amalgama-
tion of the Ember dataset, which centers on executable files,
into our Knowledge Graph is facilitated by a meticulously
crafted integration script. This script adeptly captures pivotal
structural components intrinsic to executable files, encom-
passing aspects such as segments, dependencies, exports,
and data directories. This infusion of structural intricacies
enhances the graph’s depth with vital details essential for
the nuanced classification of malware.

Within the training dataset of our classifier, each discrete
data point finds its place in the Knowledge Graph as a unique
node. It is noteworthy that the visual representation in Fig-
ure 2 encapsulates these data points through distinct nodes
denoted by a distinct color palette. Subsequent to the as-
similation of these data points, we proceed to encompass all
JSON fields originating from the dataset within the fabric of
the Knowledge Graph. This meticulous integration ensures
that the intricate JSON structure finds its reflection in the in-
terconnected relationships among nodes in the Knowledge
Graph. This holistic approach not only amplifies the com-
prehensiveness of the graph but also lays the groundwork
for a robust and nuanced malware classification framework.

1.3 Predicting New Relationships Between the Nodes
Upon augmenting our Knowledge Graph (KG) with both
EMBER and MITRE datasets, the subsequent impera-
tive involves establishing connections between nodes from
the EMBER dataset and their counterparts in the MITRE
dataset. This pivotal step constitutes the initial stride in in-
tegrating external knowledge into our classifier. To facili-
tate this process, we meticulously prepare our training set,
which serves as the foundation for training our link pre-
diction model. The creation of the training set involves as-
sessing the similarity between the data of individual nodes
within the EMBER dataset and those within the MITRE
dataset.

The computation of similarity is achieved through the ap-
plication of the Dice (Sorensen) coefficient ((Dice 1945),
(Sørensen 1948)). Specifically, given two strings A and B,

the Dice coefficient is calculated as follows (Formula 1).

D(A,B) =
2 ∗ |A ∩B|
|A|+ |B|

(1)

We establish a threshold at 0.67 as they demonstrated ro-
bust compatibility and add connections between nodes that
exhibit similarity scores surpassing this defined threshold.

Subsequently, our link prediction model undergoes train-
ing, employing a Multi-Layer Perceptron (MLP) (Yaghi et
al. 2020). In the feature engineering step, node properties ex-
isting in the input graph or added during the pipeline process
are utilized. For each node in a potential link, the node em-
beddings’ values (as discussed in Section 2.1) are concate-
nated in the pre-configured order, forming a vector ’f.’ This
process entails combining the feature vector of the source
node, denoted as s = [s1, s2, ..., sd] with the feature vector
of the target node, denoted as t = [t1, t2, ..., td]

The trained model then uses the Approximate Search strat-
egy which leverages the K-Nearest Neighbors algorithm
with our model’s prediction function as its similarity mea-
sure to trade off lower runtime for accuracy. Accuracy in this
context refers to how close the result is to the very best new
possible links according to our models predictions, i.e. the
best predictions that would be made by exhaustive search.

The initial set of considered links for each node is picked
at random and then refined in multiple iterations based of
previously predicted links. The algorithm returns the prob-
ability of a link for each node pair. We specify threshold to
include only predictions with probability greater than 55%.

Noteworthy is our observation that the trained link predic-
tion model attains a state-of-the-art performance, effectively
integrating MITRE knowledge into the EMBER dataset.
Figure 3 shows a sample of new links created by the trained
model.

2. Graph Representation Learning
We employ the Graph2Vec algorithm to generate embed-
dings from the integrated knowledge graph. The generated
embeddings serve as a dual-layered representation, captur-
ing both structural insights derived from the graph’s topol-
ogy and semantic understanding learned from the underly-
ing cybersecurity intelligence derived from MITRE dataset.
Graph2Vec traverses the entire knowledge graph and gen-
erate embeddings for every data point in the dataset. These
embeddings serve as one of the features for training our clas-
sifier.

3.Building the Malware Classifier
Employing the Gradient Boosting Machine Framework,
LightGBM (Ke et al. 2017), we conduct experiments en-
compassing diverse tree-based machine learning techniques.
LightGBM’s distinctive advantage lies in its adoption of
leaf-wise tree growth as it uses an algorithm which involves
selecting the leaf with the maximum difference in loss for
tree expansion. Consequently, the utilization of leaf-wise or
Best-first algorithms empowers the learning to attain lower
loss compared to traditional level-wise algorithms.



Feature Set Accuracy Recall F1 Score Precision
Without KG embeddings 0.93 0.92 0.93 0.95
Before MITRE Integration 0.92 0.91 0.93 0.95
After MITRE Integration 0.93 0.91 0.93 0.95

Table 1: Comparison of performance metrics

Figure 4: Comparison of performance metrics

Experimentation & Results
The training phase of experiment was executed in three dis-
tinct phases:

1. Initial Training without Node Embeddings: In the first
phase, we trained the classifier exclusively on numerical
fields from the EMBER Dataset, omitting the incorpora-
tion of node embeddings.

2. Node Embeddings Before Knowledge Graph Enrichment:
The second phase involved the inclusion of node embed-
dings calculated prior to enhancing the Knowledge Graph
with the MITRE dataset.

3. Node Embeddings After Knowledge Graph Enrichment:
The third phase encompassed the calculation of node em-
beddings subsequent to the Knowledge Graph being en-
riched with the MITRE dataset.
Conducting experiments on approximately 18,500 rows

of the EMBER dataset, with an 80-20% train-test split, our
results, summarized in Table 1 (also in Figure 4), present
accuracy and other performance metrics across all phases.
Throughout the process of hyperparameter tuning, we ex-
plored diverse techniques related to data sampling, learn-
ing rates, the number of leaves, and types of boosting. No-
tably, our observations indicated that Gradient Boosted De-
cision Trees consistently outperformed Random Forests and
CART algorithms in terms of accuracy. Importantly, we suc-
cessfully constructed a highly explainable model using the
Knowledge Graph, with little to no compromise in accuracy
and other metrics.

The infusion of MITRE knowledge contributed to a
slightly higher accuracy compared to scenarios without such
knowledge infusion. This suggests that external knowledge
incorporation holds the potential to enhance the model’s in-
terpretability without sacrificing accuracy. Through simple

Knowledge Graph queries, we derived insightful observa-
tions. For instance, we identified that many correctly pre-
dicted malign executables shared similar imports, and a ma-
jority of malwares exhibited no exports. These findings con-
tribute to the classifier’s high explainability, emphasizing the
utility of Knowledge Graphs in infusing external knowledge
and extracting meaningful insights from the model.

Conclusion
In addressing the challenges of interpretability in the field
of malware software forensics, this research looks to build
a Malware Classifier which offers high explainability with
little or no compromise to the model accuracy. Leveraging
Knowledge Graphs (KG) as a foundational element, our ap-
proach involves the infusion of external knowledge through
the integration of the MITRE Attack ontology and the EM-
BER dataset. The enriched KG serves as a comprehensive
repository of cyber intelligence, capturing intricate relation-
ships and dependencies among entities, thereby enhancing
the model’s contextual understanding. We look to establish
link between MITRE and EMBER data through exploration
of new relationships between nodes from the both datasets.
Leveraging the Graph2Vec algorithm, embeddings gener-
ated from the integrated KG contribute dual-layered repre-
sentations, incorporating both structural insights and seman-
tic understanding derived from cybersecurity intelligence.

This novel approach not only enhances model accuracy
but also ensures a high level of explainability, a critical
facet often lacking in deep learning methodologies. Further-
more, the ability to derive insightful observations through
simple Knowledge Graph queries reinforces the utility of
Knowledge Graphs in extracting meaningful insights. This
research not only contributes to the development of a sophis-
ticated and interpretable malware classifier but also sheds
light on the promising avenues of leveraging external knowl-
edge through Knowledge Graphs for improved cyber threat
intelligence and decision-making.

Future Work
Future work could focus on enhancing the scalability of the
Knowledge Graph, incorporating additional cybersecurity
intelligence sources, and exploring the integration of tem-
poral aspects for dynamic malware detection.
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