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Abstract

Abstractive text summarization, in comparison to ex-
tractive text summarization, offers the potential to gen-
erate more accurate summaries. In our work, we present
a stage-wise abstractive text summarization model that
incorporates Elementary Discourse Unit (EDU) seg-
mentation, EDU selection, and EDU fusion. We first
segment the articles into a fine-grained form, EDUs,
and build a Rhetorical Structure Theory (RST) graph
for each article in order to represent the dependencies
among EDUs. Those EDUs are encoded in a Graph At-
tention Networks (GATs), and those with higher impor-
tance will be selected as candidates to be fused. The
fusing stage is done by BART which merges the se-
lected EDUs into summaries. Our model outperforms
the baseline of BART (large) on the CNN/Daily Mail
dataset, showing its effectiveness in abstractive text
summarization.

Introduction

Text summarization can be broadly categorized into two
types: extractive and abstractive, depending on whether they
reproduce content directly from the source text or produce
novel content. The abstractive summarization approaches
exhibit reduced reliance on copied content, leading to the
generation of summaries that bear closer resemblance to
human-annotated ones, so it is more likely to establish a co-
herent context.

Nevertheless, a majority of the existing methodologies ei-
ther treat the entire text sequences (See, Liu, and Manning,
2017; Lewis et al., 2020) or important sentences (Chen and
Bansal, 2018) as inputs, introducing excessive noise during
the summarization process. In order to solve the problem of
the unexpected noise that the input sequences may bring to
the predicted abstracts, we propose employing fine-grained
units, EDUs, as the foundamental units to generate sum-
maries, and we only take the concatenations of those infor-
mative EDUs as the inputs to be fused to avoid most of the
redundant content. Therefore, how to truncate the whole text
sequences into fine-grained units and selecting those impor-
tant ones are the two necessary steps before starting to fuse
them.
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Motivated by the problems we come across above, our
proposed work can be generally summarized in the follow-
ing three stages (Figure 1):

1. Segmenting the original long text sequences into fine-
grained units and preserving the dependencies among
those units in order to be selected,

2. Selecting the informative units as the candidate units to
be fused according to the semantic relations among all
the discourse units,

3. Fusing the selected units by taking their concatenations as
the inputs of the fusing model to ensure the coherence of
the final outputs in an abstractive way.

Figure 1: The three stages of our work
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We propose to use this procedure to maximize the seman-
tic coherence of the summaries while ensuring a high den-
sity of information on the abstract content. Specifically, our
objective is to enhance the summarization accuracy of the
comprehensive model applied to the source text by identi-
fying an appropriate method for EDU selection and subse-
quent EDU fusion. We intend to exceed the BART (large)
baseline (Devlin et al., 2019) by using the method above.

Due to the copyrights and the qualities of some of the
text summarization datasets such as New York Times (NYT)
(Consortium and Company, 2008) and XSum (Narayan, Co-
hen, and Lapata, 2018), our experiments are mostly con-
ducted on CNN/Daily Mail (Hermann et al., 2015) dataset.
Also, the time and the resource investment required for the
creation of a reliable, high-quality dataset further exceed our
ability, Additionally, our work only focuses on short docu-
ments (sequences that are less than 2048 tokens) since long
document processing requires higher hardware capacity.

To transform the original articles into groups of EDUs,
we first followed the guidelines provided by Fairseq (Ott et



al., 2019) to convert the raw text files into formatted doc-
uments, facilitating subsequent processing steps. We then
deployed the segmentation tool proposed by Wang, Li, and
Yang (2018) to further convert the preprocessed documents
of articles into EDU lists. In the selecting stage, we first
used the method provided by Ji and Eisenstein (2014) to es-
tablish the graphs that illustrate the relations between every
two EDUs or EDU spans. Then, we designed a graph neu-
ral network-based (Velickovic et al., 2017) model, taking the
graphs as inputs to classify the EDUs as O (unimportant) and
1 (important). Finally, we used BART (Lewis et al., 2020) to
fuse those EDUs that are labeled with 1 to increase the co-
herence of the outputs. The details of the implementations
will be elaborated in the following sections.

Essentially, our method optimizes the data for fusing.
Specifically, it converts the original long sequences into
lists of informative units, greatly reducing the hardware re-
quirements of the training device, and saving the memory
expenses of training. Also, the performance of the fusing
model reaches a higher level by optimizing the datasets. Ad-
ditionally, our model can be used in other types of text that
have close contextualizations, such as academic papers and
novel chapters. In this way, our method can help people have
a quick and accurate understanding of the text within a cer-
tain length.

Our main contribution lies in the utilization of graph
attention networks to select important EDUs and fuse
them. This approach substantially reduces input redundancy
for BART, resulting in an improved overall segmentation-
selection-fusion process that outperforms the baseline of
BART.

Related Works

RST-based (Mann and Thompson, 1988) datasets are used
in many of the works. Recently, Wang, Li, and Yang (2018)
employed a neural network-based methodology in conjunc-
tion with the RST Discourse Treebank (RST-DT) (Carlson,
Marcu, and Okurovsky, 2001) dataset to segment sentences
into EDUs, subsequently utilized as inputs for downstream
tasks. This method was used in the work by Li, Wu, and Li
(2020) as well as our work. Moreover, diverse techniques
exist for sentence segmentation, including methods rooted
in Text Cohesion Theory (Lebanoff et al., 2020) and phrase
division (Li et al., 2017; Bing et al., 2015).

DiscoBERT proposed by Xu et al. (2020a) stands out as a
prominent EDU selecting model with BERT (Devlin et al.,
2019) as its encoder. It used Discourse Parsing from Linear
Projection (DPLP) (Ji and Eisenstein, 2014) as the method to
build RST trees for each dataset it was using. Also, it adeptly
processed the converted RST graphs and coreference graphs
derived from articles, identifying the most coherent concate-
nation of EDUs, to integrate into summaries. These concate-
nated sequences then directly assume the role of summaries.
Inspired by this method, we propose to use RST graphs as
inputs for our Graph Attention Network (Veli¢kovié et al.,
2017) which serves as the selector in our framework. Also,
we employ BERT as the encoder to enhance the extraction of
dependencies among EDUs. For the convenience of deploy-

ing the model, we leverage the repository proposed by Fey
and Lenssen (2019) to build the architecture of our model.

An array of diverse architectures characterizes the state-
of-the-art approaches. Prominently, the traditional RNN-
based neural network, Pointer Generator Network (PGNet)
See, Liu, and Manning (2017) emerges as a favorable choice
for sentence fusion, as evidenced by Li, Wu, and Li (2020);
Lebanoff et al. (2019); Xu et al. (2020b). The integration of
Pointer Network (Ptr-Net) (Vinyals, Fortunato, and Jaitly,
2015) augments the efficacy of the selection phase by fa-
cilitating the generation of output completely from input, a
strategy notably adopted by Chen and Bansal (2018). Fur-
thermore, transformer-based (Vaswani et al., 2017) mod-
els (Lewis et al., 2020; Radford et al., 2018; Devlin et al.,
2019), constitute valuable alternatives in instances where
neural networks are not employed (Rush, Chopra, and We-
ston, 2015). Other architectural enhancements are often re-
alized through structural modifications (Li et al., 2017) or
the incorporation of supplementary sub-structures (Xu et al.,
2020b).

Various mechanisms are harnessed to enhance the model’s
precision. Notably, Xu et al. (2020b); See, Liu, and Manning
(2017); Chen and Bansal (2018) employed the copy mech-
anism, facilitating not only the generation of novel terms
but also the direct replication of words from the source
text, effectively addressing the out-of-vocabulary (OOV)
challenge. The efficacy of the coverage mechanism (Tu et
al., 2016), extensively employed in Neural Machine Trans-
lation (NMT) (Luong, Pham, and Manning, 2015; Cohan
et al., 2018), extends to the domain of text summariza-
tion. Moreover, reinforcement learning leveraged by Li,
Wu, and Li (2020); Chen and Bansal (2018), integration
of window size (Luong, Pham, and Manning, 2015; Wang,
Li, and Yang, 2018; Song et al., 2019) to attenuate noise
stemming from distant information, and the adoption of
minimum-error rate translation (Rush, Chopra, and We-
ston, 2015) stand as prevalent optimization strategies. Post-
fusion refinement is achievable through the imposition of
linguistically-motivated constraints (Li et al., 2017; Bing et
al., 2015; Thadani and McKeown, 2013) or the application
of Conditional Random Field (CRF) (Wang, Li, and Yang,
2018).

EDU Segmentation
Segmentation Model

The RNN-based model provided by Wang, Li, and Yang
(2018) can segment sentences into EDUs with an accuracy
of around 94.5% on the RST-DT dataset. Therefore, we con-
sider the method to be relatively highly accurate. This tool
leverages a pre-trained word encoder model ELMo (Peters
et al., 2018) to counter the limitation of the dataset size.

RST tree building

Discourse Parsing from Linear Projection (DPLP) was pro-
posed by Ji and Eisenstein (2014) to conduct RST pars-
ing and make predictions for relations between each two
EDUs and EDU spans, and nuclearities of EDUs. Essen-
tially, DPLP is a shift-reduce method based on RST, if two



EDUs meet the condition for establishing a relation, reduce
is done, otherwise shift is done. When reduce is taken, the
relation between the top two EDUs or EDU spans in the
stack is also determined, along with their nuclearities. Con-
sequently, the built RST trees have both the relations be-
tween each two EDUs or EDU spans and the nuclearities of
EDU:s.

EDU Selection

The consideration of nuclearity in an RST tree provides a
general indication of the hierarchical importance of differ-
ent units, but it might not capture the full spectrum of sig-
nificance or relevance in all contexts. Moreover, nuclearity
is just a valuable concept in RST for understanding the gen-
eral structure and hierarchy of discourse units, selecting im-
portant EDUs provides a more refined and task-specific per-
spective on the significance of individual elements within
the discourse. Therefore, selecting EDUs based on their nu-
clearities and making determinations under global condi-
tions is necessary.

Selection Model

We designed a simple 3-layer GAT model for predicting the
labels of EDUs. The task, is therefore a node-level classifi-
cation task. The first two layers of GAT are for information
aggregation and the last GAT layer is designed for normaliz-
ing the features into the dimension of the number of classes.
To solve the possible vanishing gradient problem, we used
Exponential Linear Unit (ELU) Clevert, Unterthiner, and
Hochreiter (2016) as the activating function.

Additionally, we leveraged element-wise summation to
combine the outputs of different GAT layers with the orig-
inal inputs, allowing the model to capture various levels of
abstraction and information from different sources. Figure 2
shows the overall architecture of our model for EDU selec-
tion.

Figure 2: The architecture of EDU selecting model

Iy

@

Fully connect
GAT Layer

Activate function
-

— %D
Fully connect
GAT Layer

mean pool

BERT

In all three layers of GAT, we used the multi-head mecha-

nism to reduce the randomness of the predicted results. The
first two layers of GAT concatenate the outputs of the 4
heads while the last layer averages the 4 heads and aggre-
gates the information along with the last fully connecting
layer and predicts the classes of EDUs. In Figure 2, x in-
dicates the index sequences of EDUs and edge_index rep-
resents the edges that connect EDUs, for example, (3,5)
shows the edge from £ DUs to EDUs.

In the training stage, the logit loss function is utilized be-
cause our task is essentially a classification task. Specifi-
cally, the function can be shown as formula 1, where N in-
dicates the number of nodes in one batch. We finally use the
average loss in one batch. Adam algorithm is employed to
update the parameters of the model.

ln = *[yn loga(xn) +(1- yn) log(l - U(mn))] (D

L:{lla'“alN}T @)
l(x,y) = mean(L) (3)

The trained model is then used for generating the se-
quences of labels for the EDUs from all the articles, where
only those EDUs that are labeled with *1° will be chosen and
concatenated.

Converted RST Graphs

The dataset we used for selecting is the converted RST
graphs of CNN/Daily Mail and it was uploaded on the repos-
itory ! by Xu et al. (2020a). The conversion from the origi-
nally built RST trees to converted homogeneous graphs can
be generally shown in figure 3:

Figure 3: The converting process of an RST tree
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Figure 3.a shows the original RST tree and 3.b shows
the converted RST discourse tree, the dark blue nodes are
nucleus nodes and the light blue nodes are satellite ones.
R1 — Ry are relations between each two nodes and Fy — Fs
indicate the EDUs. The converting principles can be con-
cluded as two rules: In terms of the intermediate nodes, (a)
if the two children are both nucleus nodes or both satellite
nodes, then the right node is pointing at the left node, (b)
if there is one satellite node and one nucleus node, then
the satellite note is pointing at the nucleus node Xu et al.
(2020a). In this way, the converted RST graphs always have
N nodes and N-1 edges.

"https://utexas.app.box.com/v/DiscoBERT-ACL2020



EDU encoding We utilized BERT as the encoder to en-
rich the features of the embeddings. Focusing on aligning
the input dimensions of GAT, we convert the 3-dimensional
vectors into 2-dimensional ones by using the mean pool-
ing strategy. Finally, we get the articles in the form of 2-
dimensional vectors (N, 768), where N is the number of
EDUs in an article. The process can be depicted in figure
4.

Figure 4: The overall process of encoding articles
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Greedy Method

An alternative approach we utilized in our study is the ap-
plication of a greedy method. The article-summary pairs are
first obtained and segmented as previously shown, followed
by the concatenation of 1, 2 and 3 EDUs respectively for
each sentence. Finally, the combinations that maximize the
ROUGE — Lyecq scores in terms of the highlights pre-
sented will be designated as the important EDUs.

Figure 5: Greedy Method
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Figure 5 illustrates the procedure of selecting important
EDUs using the greedy method. Within the diagram, N rep-
resents the count of EDUs within an article, while M signi-
fies the number of sentences in a referenced summary. The
indices a, b, ¢, and d denote potential candidate EDU posi-
tions. The procedure can also be represented using the fol-
lowing equation:

Sentencey_

(Eby, | EDY, | EDU, | EDU, |

EDU¢ = Zﬁgl arg max(ROUGE — Lyecaii(EDUcomp, sentencey,)) (4)

where E DU,y is the set encompassing all combina-
tions of 1, 2 and 3 EDUs, and EDU¢ is the outcome
achieved by concatenating the selected EDUs. With the

objective of diminishing redundancy within concatenated
EDUs, in cases where duplicate EDUs are present in the
candidate lists, we eliminate the subsequent occurrences of
these EDUs and retain only those EDUs that make their ini-
tial appearance in the candidate list.

Also, to counter the problem of the potential empty EDUs,
we set up all the ROUGE scores of an empty EDU to zero
so those empty EDUs will not be selected in this method.

EDU Fusion

Due to the state-of-the-art performance of BART in natu-
ral language processing, it is employed to fuse the selected
EDUs in our work.

For the fusion of the converted RST graphs, we gathered
all the labels assigned to the EDUs within those graphs. This
leads us to focus solely on those EDUs marked with a 1’
label, which are then concatenated to serve as the input for
our fusing model. For the article-summary pairs, the outputs
are the indices of important EDUs. Essentially, both datasets
are the combined sequences of the selected EDUs.

For the evaluation of the converted RST graphs, we en-
counter a situation where the associated graphs lack refer-
enced summaries, to tackle this issue, we need to match
each graph with the summaries from the article-summary
pair dataset by using the hash table.

To align the RST discourse tree dataset with the
CNN/Daily Mail article-summary pair dataset, we estab-
lished a hash table. In this table, the document IDs serve
as the strings to generate the hash values, and the values in
the table are the corresponding summaries from the article-
summary pair dataset. The function we used for generating
hash value is SHA-256 hash function. The summaries are
stored as dictionaries within JSON files, with file names cor-
responding to the respective RST graph files.

Owing to the pre-training tasks of BART, it is capable
of capturing the rich semantic information from the given
text and making predictions regressively. We fine-tune it to
make BART fit more to the given downstream task and the
corresponding dataset. The fine-tuning object for our work
is making BART have a better performance when taking the
concatenated important EDUs as inputs, especially when the
whole sequence is not coherent, the model can be trained
to be capable of outputting coherent sequences with correct
grammar.

With the filtering of the selecting model, the input se-
quences are much shorter than the original inputs, which re-
duces the requirements of the device. We modified the max
length of the input from 2048 to 1024, in order to boost the
encoding process.

Experiments
Implementation Details

EDU segmentation: We use the pre-trained model pro-
posed by Wang, Li, and Yang (2018), the environment is
set according to the repository” uploaded by Li, Wu, and Li
(2020).

*https://github.com/PKU-TANGENT/EDUSum



Package Version
pytorch 1.12.0-gpu
cuda 11.7
torch_geometric 2.3.1
transformers 4.30.2

Table 1: EDU selection environment

Package Version
pytorch 1.10.0-gpu
cuda 10.2
hydra-core 1.0.7
omegaconf 2.0.6
bitarray 2.6.2
sacrebleu 2.3.1

regex 2022.10.31

Table 2: EDU fusion environment

EDU Selection: GNN structures are utilized from PyG?.
Specifically, we use the environment configured as shown in
Table 1.

In the data processing stage, the data structure Data is em-
ployed for storing the graphs. DataLoader sews up a certain
number of graphs in a mini-batch into a large graph. The
batch size of the training stage is 24 and the max length of
each EDU is 20. We leverage the multi-head mechanism in
each GAT layer, the number of heads in each layer is set to
4.

The training process is done on a 4-GPU server, where
each GPU has 32 gigabytes of memory. We use the multi-
GPU mechanism to boost the training speed.

For the greedy selecting method, we employ the code
from Wang, Li, and Yang (2018) and make modifications
to the calculation of the ROUGE scores. The datasets may
contain some empty EDUs or EDUs that only contain the
invalid characters. When meeting those EDUs, we set the
rouge scores for all sentences to 0.

EDU Fusion: We use the pre-trained BART (large) model
as our baseline, and the fine-tuning is also done based on
the model. The model parameters can be accessed from
a GitHub repository *. With two different datasets prepro-
cessed by the GNN and the Greedy Method respectively, the
max length of the input sequence is modified from 2048 to
1024 (Due to the redundancy reduction of the original ar-
ticles, the inputs are far shorter than before). Other hyper-
parameters are set the same as the BART model fine-tuning
on the original CNN/Daily Mail dataset. The environment is
set as in Table 2.

Other than using BART, we also utilized GPT-3 as one
of the testing models. GPT-3 is one of the most powerful
language models proposed by OpenAl, we use the fastest
model, Ada, in GPT-3 and since OpenAl has a series of well-
defined APIs for users to use their models fast and easily, we
do not need to do further configuration to set up the hyper-

3https://github.com/pyg-team/pytorch_geometric
*https://github.com/facebookresearch/fairseq/tree/main/
examples/bart

Number of Graphs

Train 287,227
Test 11,490
Valid 13,368

Table 3: Article-summay pair dataset size

Number of Graphs
Train 287,227
Test 11,490
Valid 13,368

Table 4: Converted RST discourse tree dataset size

parameters as all the hyper-parameters were preconfigured.

Evaluation

The evaluation metrics for all the experiments are the
ROUGE scores of the precision, recall and F1 scores.
We first leverage the Penn Treebank Tokenizer from Stan-
fordNLP® to tokenize all the articles and referenced sum-
maries into lists of tokens, subsequently followed by the
utilization of files2rouge package to automatically calculate
the metrics between two files. The command files2rouge re-
quires the two files (hypotheses and references) to have the
same number of lines.

Results

Our work focuses on the comparison between the perfor-
mance of BART fine-tunned on the original CNN/Daily
Mail dataset and the performance of BART fine-tunned
on the concatenated sequences of selected EDUs from the
CNN/Daily Mail dataset.

With different pre-processing methods, we have two dif-
ferent datasets processed based on the CNN/Daily Mail
dataset, the article-summary pair dataset (Table 3) and the
converted RST tree dataset (Table 4).

Our results are presented in Table 5. The validation met-
rics are the F1 scores of all the ROUGE metrics. The first
line introduces the baseline of BART-large, and it is directly
referenced from the paper where BART was proposed. The
second line shows an alternative method that combines the
greedy method and Ada (one of the GPT-3 models). The re-
sults from the third line are obtained by replacing the GPT-
3 model with BART based on the method of the second
line. The last line is the result of the combination of GNN
and BART, which shows the best ROUGE-1 and ROUGE-2
scores among all the methods.

All the validations are based on the source files that con-
tain the sequential concatenations of selected EDUs and
the target files that contain the highlights of articles. Com-
pared with BART-Large, all the experiments with EDU se-
lection outperform it, among which the GNN method has
the best performance in terms of the ROUGE-1 (58.8%)
and ROUGE-2 (35.7%), and the greedy method has the best

SOfficial website: https://stanfordnlp.github.io/CoreNLP/



ROUGE-1 ROUGE-2 ROUGE-L

BART-Large 44.16
Greedy Method + GPT-3 48.74
Greedy Method + BART

GNN + BART

58.12
58.80

21.28 40.90
23.15 45.35
34.68 55.37
35.70 55.30

Table 5: Experimental results on CNN/Daily Mail dataset

ROUGE-L score with about 0.07 percent higher than the
GNN method, reaching a percentage of 55.37.

The results show that the summarization performance is
better after changing the inputs from the whole article to the
combinations of EDUs. With the same constituent of the
dataset, BART outperforms Ada. Additionally, with more
parameters, GNN has a better performance in terms of se-
lecting salient EDUs than the greedy method.

Conclusion

In our work, we choose to optimize the datasets by truncat-
ing the sentences in articles into fine-grained units, EDUs,
and selecting the most informative ones as the candidates to
be fused. We use GNN and the greedy method to select those
salient EDUs separately and apply BART to fuse them. In all
our stages, the segmentation and the selection stages serve as
the encoder to label the important EDUs and concatenate the
EDUs that are labeled with *1’ which indicates those EDUs
as important. The decoder consists of the BART-large pre-
trained model. When using GNN as the selecting method,
the encoder and the decoder can be trained separately, but
the inputs of the decoder have to be restricted to the out-
puts of the encoder. Our stage-wise method outperforms the
BERT-large baseline with a 14.64% higher ROUGE-1 score,
14.42% higher ROUGE-2 score and 14.4% higher ROUGE-
L score in text summarization.

Transformer-based models outperform most of the other
neural models in terms of natural language generation, at
the same time, they require more calculation amount which
means they take more time to be trained and fine-tuned.
Complete articles naturally have rhetorical structures that
can assist in comprehending the semantic relations, and this
type of structure can always be represented as graphs, where
Graph Neural Networks can be used . Graph neural net-
works, with a good performance of processing graph-based
data, although require strict pre-processing of the datasets,
can lead to a better performance of the results of the graph-
based tasks.

Our model is only proven to work better on the
CNN/Daily Mail dataset whose reference summaries are
usually more than one sentence, this reduces the difficulty
of selecting the salient EDUs. There are a large number of
parameters in our model which require a long time to fine-
tune them. In our future work, we can try to use a better
selection method that has a smaller volume and has a better
performance in choosing salient units.
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