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Abstract
The forecasting of (severe) weather/climate systems using
satellite telemetry and Machine Learning (ML) is generally
held back by the size and availability of the pertaining
datasets. This research outlines a newly devised pipeline for
the automated construction of concise datasets designed to
convert computationally expensive raw data from a
netCDF4 database into a simpler format, with the end goal
of future use in severe weather forecasting via the sole use
of satellite data as an alternative to more conventional,
expensive and localized means. By representing components
of the dataset as int8 RGB(A) values of PNG images, data
can be spatially related in a concise, consistent and
visualizable manner that significantly reduces dataset size
relative to the size of the raw dataset. This method is used
on Atmospheric Motion Vectors (AMVs) derived from
multispectral satellite telemetry via Optical flow Code for
Tracking, Atmospheric motion vector, and Nowcasting
Experiments (OCTANE) in the construction of a dataset
capable of use in prediction of future movements of clouds.

Introduction1

Two common issues with the application of ML to Satellite
Imagery Time Series (SITS) data are the sheer size of the
raw datasets and the relatively few number of datasets
available for training (Chen et al. 2023). The development
of a framework/tool capable of the dynamic production of
usable datasets from raw SITS data may be a useful step
forwards. This research outlines and demonstrates a newly
devised modular pipeline for the automated production of
image-based SITS datasets from raw SITS data that are
significantly smaller than the raw datasets.

Data Preparation and Methodology

Proper configuration and construction of the dataset used
for training is paramount to the successful application of a
ML model. ML models are optimization algorithms at their
core. If something is not consistent, it cannot be optimized,
hence consistency is of utmost importance.
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Any image-based dataset can be used by anything else
that can use images; such datasets can be natively utilized
by any program or process which can use images, from
image viewers to computer vision frameworks, allowing
easier comprehension and analysis of data and expediting
processes involved with working with data. Any vector
field with up to four degrees of freedom can be simply and
concisely depicted as different components of an RGB(A)
image. Representation of vector components as colors is a
simple and intuitive method for depicting data, particularly
for data with localized relationships such as AMVs.
The PERiLS_2022 GOES-16 ABI Mesoscale Sector

Data database (UCAR/NCAR 2022) is the source of all
raw data used, composed of netCDF4 (Unidata 2012) data
sourced from the Advanced Baseline Imager (ABI)
(NASA/NOAA 2018) of the GOES-16 satellite. The data
used pertains to all 24 hours of 4-03-22 to 4-07-22
(inclusive), chosen for the presence of tornadic activity.
Only five days were used due to Computational
Limitations (CL). OCTANE (Apke et al. 2023) is fed 3
ABI channels, each chosen for what they represent and
how they interact; 08 (upper-level cloud water vapor, λ =
6,200 nm), 09 (mid-level cloud water vapor, λ = 6,900
nm), and 11 (cloud top phase, λ = 8,400 nm)1 and outputs
vector fields U (zonal flow) and V (meridional flow).

Custom Dataset Construction Pipeline
The image composition process allows AMV data to be
represented and parsed by a model very consistently; any
wind speed at any point in any timestep is mapped to the
same data value for any point in any other timestep.
Data is processed considering the range that int8 data of

RGB(A) PNGs can represent, 0-255. To normalize AMVs,
0 m/s U and 0 m/s V are set to 127, effectively setting 0
m/s to approximately the center of the range 0 to 255, thus
allowing effective representation of both positive and
negative wind velocities. To standardize AMVs, ±50 m/s
lies on the borderline between what would be classified as
an EF1 or an EF2 tornado. Data values higher than ±50 m/s
for U or V are set to ±50 m/s; thus velocities from -50 m/s
to +50 m/s are mapped to 0 to 255. Rad (radiance, i.e.
light) values are normalized by mapping 0-5 to the range



0-255, since most Rad data lies below 5 with room to
spare. The Rad data for this iteration of the dataset was
taken from channel 08 of the ABI data. Any lost or broken
data is manually picked out prior to use. A custom data
loader made for use with MS-RNN prepares the data by
decomposing the images into their component colors and
stacking them vertically, making each image three times as
tall while allowing them to be as monochrome images, and
standardizes the range 0-255 (i.e. int8) to the range 0-1
prior to use by the model.

Preliminary Experimentation and Results

Extracting and combining only the data most necessary to
the application (i.e. AMV prediction) saves computational
resources in large amounts. The final size of the dataset
generated for this demonstration is ~212 MB (MegaBytes),
~0.02% the raw dataset size (~112.1 GB (GigaBytes)
compressed), and ~33% the size of the subset of raw data
used to make it (~650 MB compressed); thus the dataset is
much more concise, and the model need not consider
relationships between data of focus (i.e. AMVs) and
potentially contaminant data (i.e. unused ABI channels).
Training, validation, and testing were carried out via a

modified version of the MultiScale Recurrent Neural
Network (MS-RNN) (Ma et al. 2022a) framework using
the same method employed by the MS-RNN team for the
KTH action dataset. Similarly to their method, the dataset
used for this demonstration was divided into 11 mutually
exclusive subsets, seven of which were used for training,
and four of which were used for testing. These subsets
were put into SITS batches of 20 timesteps, where the first
10 timesteps are used to predict the next 10 timesteps.
Further details on training and testing can be found in the
MS-RNN paper.
The results show prediction of 10 future timesteps with

an average Mean Square Error (MSE) increase of ~9.947
per frame (Figure 2) and an average decrease in SSIM
(Structural Similarity Index Measure) of ~0.012 per frame
(Figure 1) with MS-ConvLSTM. Table 1 compares results
of tested models. Differences in settings between models
were necessary due to CL derived from having no funding.

Table 1: Compared average results between models trained on the
custom dataset via the MS-RNN framework/repository

Model Time Params Loss SSIM MSE MAE PSNR Settings

MS-ConvLSTM 2.81 H 1.773M 715.736 0.92 37.78 677.96 32.27 120 px
10 in, 10 out

ConvLSTM 3.49 H 1.773M 734.741 0.918 36.90 697.83 31.62 120 px
6 in, 6 out

MK-LSTM 6.33 H 7.577M 293.978 0.926 13.48 280.05 32.52 80 px
6 in, 6 out

MS-TrajGRU 3.17 H 1.916M 556.17 0.939 25.74 529.91 33.90 120 px
5 in, 5 out

TrajGRU 1.68 H 1.916M 341.313 0.921 19.61 320.76 31.20 80 px
4 in, 4 out

Figure 1: The blue line depicts the Real row of the above SSIM
per frame table, and the red line depicts the Pred row.

Figure 2: The blue line depicts the Real row of the MSE Per
Frame table, and the red line depicts the Pred row.

Conclusions and Future Research

The dataset production pipeline, alongside the modified
MS-RNN framework, shows potential for future work in
prediction and analysis of SITS data and AMVs in a
concise, simple, scalable, robust and generalizable manner,
and may prove to be an accessible method for weather
forecasting/nowcasting in a more cost-effective manner
than more conventional localized, expensive and
specialized ground equipment, and without the need/use of
an extensive backlog of data. As climate change continues
to progress, the weather patterns of our world are likely to
become increasingly troublesome to analyze and account
for. It is hoped that this work may be found useful as a tool,
reference and/or building block in the future development
of tools and techniques to help combat climate change as
its prevalence continues to grow.

Potential in Future Research
Atmospheric phenomena are multiscale in nature. Use of
other spatiotemporal scales has shown potential in testing.
Conjoined use of multiple scales is also a potential avenue
for future work. Lightning flash rates and size from the
Geostationary Lightning Mapper (GLM) (NASA 2018)
have been found to be strongly tied to “convective intensity
and stratiform precipitation.” (Thiel et al. 2020). Tornadic
systems can be characterized by vortices and convection
currents, thus are capable of characterization by harmonics
and oscillations. Signature detection on satellite data has
shown viable for tornado detection (Apke et al. 2021)
(Bruning et al. 2019); several forms of Proper Orthogonal
Decomposition (POD) seem viable for this, such as
MODULO/mPOD (Ninni and Mendez 2020), and SPOD
(Mengaldo and Maulik 2021). Assimilating AMVs into
analytical weather prediction models is known to improve
predictions (Zhao et al. 2021).
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