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Abstract

Selecting a single alternative among many is a key cognitive
task. Many formal approaches for solving this problem have
been explored, but these approaches consider having, or elic-
iting, complete preference information. As a natural exten-
sion, work has also been done to consider situations where
complete preference information is unknown. What has not
been studied is the effect of incomplete information wrt the
alternatives an agent may select from. This work focuses on
the computational problems that arise when preference in-
formation is known, but alternatives are only partially speci-
fied, such as when one is searching online classified ads. We
both define these problems and specify some general com-
putational complexity results. While the complexity of the
defined problems are not tightly bound, we do provide a case
study which demonstrates how partial alternatives affect dif-
ferent preference representations differently.

Introduction

Rational agents must be capable of making decisions. Often
these decisions are based, not only on the agent’s needs, but
their preferences. The importance of modeling an agent’s
preferences has led to a great deal of research across many
fields such as operations research, economics, psychology,
and artificial intelligence(Domshlak et al. 2011). A common
assumption in this research is that a particular agent’s pref-
erences are either known, or can be elicited, i.e. we have
full information. Of course, there has also been research
into partial knowledge of an agent’s preferences(Fagin et
al. 2006; Cullinan, Hsiao, and Polett 2014). These repre-
sentations of partial preference knowledge tend to involve
specialized preference representations(Liu and Truszczynski
2015) including through probabilistic reasoning(Cornelio et
al. 2021).

This work also deals with the domain of preference rea-
soning under limited information or uncertainty, but instead
of the agent’s preferences being unknown, we consider a do-
main where we have limited knowledge about the alterna-
tives under consideration. This type of limited information
occurs often in real-world scenarios. For example, consider
the purchase of a used camera from an online auction site.

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

The availability of product information is likely to be ex-
tremely variable between different sellers. I.e some infor-
mation will be present in certain listings that is not available
in others, and vice versa. In this setting you do not have
complete information about each alternative. In these cases
gathering further information may be impossible, however
agent’s may still need to make the best decision possible.
In particular, we concern ourselves with problems where we
know an agent’s preferences under complete information al-
ternatives and use that to reason about incomplete informa-
tion alternatives, herein referred to as incomplete alterna-
tives.

This exercise leads us to two problems, possible domi-
nance and necessary dominance. Similar to their definitions
in other domains of incomplete preference information, pos-
sible dominance occurs when one alternative has the po-
tential to dominate (or be preferred to) another alternative,
while necessary dominance occurs when one alternative will
always dominate another alternative. These problems focus
solely on the comparison of pairs of alternatives. Problems
which look at the entire domain of alternatives, such as opti-
mality tend to remain the same under incomplete alternatives
as the domain of all complete alternatives is included in the
domain of all incomplete alternatives.

This work’s particular contribution is to define some gen-
eral complexity results which arise from the introduction of
incomplete alternatives. These results do not allow us to give
strict complexity bounds to all instances of dominance under
incomplete alternatives, but do significantly limit the scope
of possibility. As an example of the effect of incomplete
alternatives on computational complexity, we provided two
case studies where we determine strict complexity bounds
for the introduced problems.

This work is organized as follows. The next section pro-
vides required background information and definitions for
the works. The third section presents our results, along with
proofs. Finally, the fourth section contains a discussion of
the results as well as our final conclusions and remaining
open questions.

Background

Given the variability of human preferences there have
been many models proposed for how to represent prefer-
ences(Kaci 2011) which is beyond the purview of this paper.



One common thread through all these representations is the
use of preorders. A preorder is any binary relation >~ which
is reflexive and transitive. In particular we define o > [,
given two alternatives « and 3, if « is at least as preferred
as 8. Moreover, a fotal order is any preorder where the rela-
tion is irreflexive and exists between all pairs of alternatives.
Given a preference relation >~ we can define the related re-
lation of dominance.

Definition 1 (Dominance (DOM)). Given a preference re-
lation = and two partial alternatives o and 8, o dominates
Bifar Band B 7 a.

Preference relations occur over a domain of alterna-
tive €2, this work is only concerned with domains of al-
ternatives that are combinatorial in nature. A combi-
natorial domain is defined by a finite, ordered set of
attributes (A1, Aa, As, ..., A,) where each attribute has
a finite domain of possible values such that D(A;) =
{v1,v2,...,vm}. An alternative o of a combinatorial do-
main is a member of the set defined by the Cartesian prod-
uct of the individual attribute domains, i.e. & € D(A;) %
D(Az) x ... x D(Ayp).

We define incomplete alternatives within a given combi-
natorial domain () to be alternatives where some attribute
values are unknown. There are any number of reasons why
an attribute, or attributes, may be unknown, but an agent still
needs to select between two alternatives. To this end, we de-
fine two problems, possible incomplete dominance and nec-
essary incomplete dominance, below.

Definition 2 (Possible Incomplete Dominance (P-DOM)).
Given a preference relation > and two partial alternatives
a and 3, a possibly dominates 3 if there exists some com-
pletion of a and B such that o = 3 and B % a.

Definition 3 (Necessary Incomplete Dominance (N-DOM)).
Given a preference relation = and two partial alternatives
« and B, « necessarily dominates (3 if for all completions of
aand B, a = Band B ¥ a.

For simplicity we will refer to these as P-DOM and N-
DOM for the rest of this work. It is important to state that
while these definitions are similar to possible and necessary
dominance used elsewhere in the preference reasoning lit-
erature, those definitions deal with partially specified pref-
erence relations and thus are distinctly different problems
from those defined above.

Later in this work we will provide some generic com-
plexity results, wrt P-DOM and N-DOM, however these
results are not strict and so we provide a case study of P-
DOM and N-DOM complexity results for two specific pref-
erence representations: Lexicographic Preference Models
(Fishburn 1974) and Ranked Preference Formulas (Huels-
man and Truszczynski 2022). A lexicographic preference
model (LPM) represents preferences over a combinatorial
domain by assigning an importance order to the attributes
and a preference order for each attribute domain.

Formally, an LPM is a pair m = (r, > ), where 7 is a strict
ranking (a one-to-one mapping of attributes to integers) of
attributes and >= {>,,,>4,,..., >y, } is a collection of
total orders, with one order for each attribute’s domain. Pref-
erence is formally defined over an LMP 7 = (r, =) as @ >

@ if there exists some attribute a such that a[a] >, S[a] and
for all attributes b such that r(b) < r(a), a[b] = S[b].

Consider the domain defined over the power set of O =
{a,b,c,d}. Suppose we have an LPM 7 = (r, ) where the
ranking r induces the order d > ¢ > b > a on attributes and
we prefer the inclusion of an object over its exclusion. In this
case the alternatives {a,b,d} and {a,c} are ordered such
that {a,b,d} > {a,c}. They are ordered this way because
the most important attribute where the two alternatives differ
is d, and the inclusion of d is preferred over its exclusion,
with no consideration paid to other attributes like c or b.

Ranking preference formulas (RPFs) are defined over a
binary combinatorial domain C(V) (a combinatorial do-
main where all attributes have only possible two values)
and consists of a vector of preference formulas ¢ =
(1,02, ..,¢k), where ¢; € L(V), fori = 1,...,k.
Where £(V) is the language of propositional logic defined
over the set V of attributes of the domain C()). We define
the rank of an alternative v, () by setting r(a) = min{s :
a = p;}. Given two alternatives «, 5 € C(V), we define
a >, Bifr(a) < r(B). Wenote that if {i : a = ¢;} = 0,
r(a) = oo. Thus, alternatives which do not satisfy any of
the formulas in ¢ are less preferred than any other alterna-
tive. RPFs generate total preorders.

Revisiting the domain over the power set of O =
{a, b, c,d}, we might define an RPFas a A b >~ (a A c) V
(bAd) = T. In this case the alternative {a, b, c} = {a,c,d}
given that {a, b, ¢} satisfies the rank 1 formula (and thus is
given a rank value of 1) while {a, ¢, d} satisfies the rank 2
formula, thus making {a, b, c} more preferred.

We selected these two preference representations because
they share a common property, namely the problem of dom-
inance is in P for both representations. Moreover, as we
will show, when incomplete alternatives are considered their
complexity for N-DOM and P-DOM differs, thus showing
the potential change of complexity to dominance problems
when incomplete alternatives are introduced.

Results

The introduction of possibly unknown values into alterna-
tives does have the ability to increase the computational
complexity of the dominance problem for a preference rep-
resentation. As one would expect, at best the complexity of
P-DOM and N-DOM remains constant with the problem of
dominance. In the worst case, we find that the problem has
an upper complexity limit which is close, but significant, to
the original dominance problem. Results relative to P-DOM
are given in Theorems 1 and 2.

Theorem 1. If DOM(L) € ¥} then P-DOM(L) € %[ .

Proof. By definition the complexity class ka 1 consists of
those algorithms that can be checked in polynomial time
given a Ekp oracle. This means if we have a DOM(L) or-
acle and an instance of P-DOM(L) for a given preference
> and two partial alternative o and /3 then we can guess a
completion of « and 8 and check if (o, 8, =) € DOM(L)
in polynomial time. This means that P-DOM(L) is in com-
plexity class Ekpﬂ. O



Theorem 2. If DOM(L) is E,f-hard then P-DOM(L) is E,f-
hard.

Proof. The class of problems described by P-DOM(L) in-
cludes all problems described by DOM(L) as they are
merely instances of P-DOM(L) where both alternatives are
complete. This means there exists a polynomial time map-
ping from instances to DOM(L) to instances of P-DOM(L)
where the instance is a member of P-DOM(L) iff the in-
stance is also a member of DOM(L). Since DOM(L) is Ef -
hard, P-DOM(£) must also be ka -hard. ]

The problem of N-DOM is related to the problem of P-
DOM and thus we can describe its complexity in terms of
P-DOM.

Theorem 3. If P-DOM(L) is in ZkP then N-DOM(L) is in
Hf if L produces a total order.

Proof. The class of problems described by HkP is the class
of all problems which are the complement of Ekp . If £ pro-
duces a total order then for any two alternatives « and 3 ei-
ther o > S or 8 = «ais true, but not both. As such if we have
two incomplete alternatives o and 8’ then if there exists no
completion such that S dominates « then o must dominate
(. In other words, & N-DOMs /3 is 3 does not P-DOM «.
This means the problem of N-DOM is the complement of
P-DOM in the case of total orders, thus if P-DOM is in Ef
then N-DOM is in 1T O

As we have shown it is possible that P-DOM and N-DOM
are more computationally complex problems than DOM.
These results give an upper limit, but are not tightly bound.
This means that to determine the complexity of P-DOM and
N-DOM for a particular preference representation one must
perform some analysis of the problems for the representation
of interest. Here we look at RPFs and LPMs as a case study
of this type of analysis. While the complexity of DOM is
the same for both representations, the resulting complexity
of P-DOM and N-DOM is different. First, we look into the
complexity of the P-DOM problem on LPMs, Proposition 1
, and RPFs, Proposition 2.

Proposition 1. The problem of P-DOM(LPM) is in P.

Proof. Consider the process for determining dominance be-
tween two alternatives « and 5 wrt an LPM, pi. For each
attribute we compare the values between « and 5. We may
run into the following cases:

e If the values are known and the same, we continue to the
next most important attribute.

* If the values are known and different we determine if o >
B and if so then « possibly dominates 3 and if not then «
does not possibly dominate 3.

« If the value is only known in 8 and the value of [ is not
the optimal value, we can assign « the optimal value for
that attribute, thus meaning that « possibly dominates S3.

* If the value is only known in 8 and the value of 5 is the
optimal value, we assign « the optimal value for that at-
tribute and continue to the next most important attribute.

* If the value is only known for « and the value of « is not
the pessimal value, we assign 3 the pessimal value, thus
meaning « possibly dominates [3.

* If the value is only known for o and the value of « is
the pessimal value, we assign 3 the pessimal value and
continue to the next most important attribute.

« If the value is unknown for both o and S we assign « the
optimal value and S the pessimal value, thus a possibly
dominates [3.

* If we exhaust all attributes without determining possible
dominance then « does not possibly dominate (5 because
under the optimal choices for « and pessimal for 3 they
are preferentially equivalent.

Since this process only takes time proportional to the num-
ber of attributes the determination of possible dominance for
LPMs takes polynomial time. O

Proposition 2. The problem of P-DOM(RPF) is NP-
complete.

Proof. P-Dom(RPF) € NP

Consider an instance of P-Dom(RPF) for a given RPF ¥ and
two incomplete alternatives « and 3. We can guess comple-
tions for both a and 3 (o and ', respectively) and compute
their ranks according to U. If @’ >y [’ then we know that
the instance is in P-Dom(RPF). This process takes polyno-
mial time because computing dominance wrt a RPF takes
time polynomial in the size of the RPF. Thus, P-Dom(RPF)
€ NP.

P-Dom(RPF) is NP-hard

‘We show this via a polynomial time mapping reduction from
SAT. Given a boolean formula over & variables, ®, we con-
struct an instance of P-Dom(RPF), f(®) = (¥, «, 3). The
domain of W is a binary combinatorial domain with k& + 1 at-
tributes. Each attribute 1 - - - k maps directly onto the same-
indexed boolean variable from ®. W is an RPF constructed
such that the ranks are as follows:

1. ®Azp
2. k41
3. kg

We then construct « and (3 such that all attributes 1 through
k for both « and 3 are unknown. We then set a[k + 1] = 1
and B[k + 1] = 0.

If & € SAT then f(®) € P-Dom(RPF)

If @ is satisfiable then there exists a setting of variables that
makes the formula true. If we take those values and use
them to complete « such that if boolean variable x; is true
in the satisfying assignment then «[i] = 1 and if not then
ali] = 0, then for any satisfying assignment of ® there exists
a completion of « such that o has rank 1. Since S[k+1] = 0,
B can only ever achieve rank 2. Thus, if @ is satisfiable there
exists a completion of « such that & >y [ meaning f(®) €
P-Dom(RPF).

If & ¢ SAT then f(®) ¢ P-Dom(RPF)
If @ is not satisfiable then there exists no setting of variables



that makes the formula true. This means that there is no
setting of values in « such that it will be awarded rank 1
by ¥ and thus o will always be given rank 3. Since § will
always be given rank 2, there is no completion of « and 3
such that & >y (8 and thus f(®) 4n P-Dom(RPF).

We have shown that P-Dom(RPF) is both in class NP and
NP-hard, thus P-Dom(RPF) is NP-complete. O

As shown above P-DOM is in the same complexity class
as DOM for LPMs, but is increased for RPFs. When turning
our analysis to N-DOM we see similar results. LPM com-
plexity is unaffected by the introduction of incomplete alter-
natives, Proposition 3, and RPFs change complexity, Propo-
sition 4. In this case, N-Dom is CoNP complete for RPFs.

Proposition 3. The problem of N-DOM(LPM) is in P,

Proof. Consider the process for determining dominance be-
tween two alternatives « and 3 wrt an LPM, pi. For each
attribute we compare the values between o and 8. We may
run into the following cases:

e [If the values are known and the same, we continue to the
next most important attribute.

* If the values are known and different we determine if o >
[ and if so then « necessarily dominates 5 and if not then
« does not necessarily dominate £3.

* If the value is only known in 3 and the value of J is not the
pessimal value, then « can be assigned a value such that
[ dominates o and so « does not necessarily dominate 3.

e If the value is only known in 8 and the value of 3 is the
pessimal value, we assign « the pessimal value for that
attribute and continue to the next most important attribute.

* If the value is only known for « and the value of « is not
the optimal value, /3 can be assigned the optimal value,
thus meaning a does not necessarily dominate /3.

* If the value is only known for « and the value of « is the
optimal value, we assign (3 the optimal value and continue
to the next most important attribute.

o If the value is unknown for both o and S we assign « the
pessimal value and [ the optimal value, thus « does not
necessarily dominate 3.

* If we exhaust all attributes without determining necessary
dominance then « does not necessarily dominate 3 be-
cause under the pessimal choices for a and optimal for 3
they are preferentially equivalent.

Since this process only takes time proportional to the num-
ber of attributes, the determination of necessary dominance
for LPMs takes polynomial time. 0

Proposition 4. The problem of N-DOM(RPF) is CoNP-
complete.

Proof. The problem of not N-DOM(RPF) is in NP

Given an RPF ® and two incomplete alternatives « and (3,
the instance is not a member of N-DOM(RPF) if there ex-
ists a completion of « and 3 (o’ and ', respectively) such
that 8 =4 «. Since the process of determining preference
in an RPF is in P, we can guess completions for a and § (o’

and (', respectively) and if those completions are such that
B’ =g o’ then a does not necessarily dominate 5. Thus the
problem of not N-DOM(RPF) is in NP and so it’s comple-
ment N-DOM(RPF) must be in CoNP. O]

The above results show, explicitly, that the complexity
of the problems of P-DOM and N-DOM are representation
specific, despite placing non-tight limits on the computa-
tional complexity based on the dominance problem. Impor-
tantly, this limits the required analysis needed to determine
the complexity of introducing incomplete alternatives to a
particular preference representations.

Discussion and Conclusions

Incomplete alternatives, and its effects on the complexity of
related dominance problems, presents a new avenue of anal-
ysis for preference representations over combinatorial do-
mains. Of course, dominance is not the only problem of
interest when considering preferences. We feel it important
to note that since the domain of incomplete alternatives sub-
sumes the set of complete alternatives, the related problems
of maximal and minimal preference are unaffected as their
solutions would be the same whether or not we allow for
incompleteness.

This work also introduces many open questions. At the
forefront of our interest is the effects of crossing incomplete
alternatives with incomplete preference information, both in
terms of unknown and probabilistic information. As a form
of analysis resistance to complexity increases due to incom-
plete alternatives could provide an interesting method of re-
lating various preference representations, similar to the anal-
ysis of preference language subsumption (Huelsman and
Truszczynski 2022).

Overall, incomplete alternatives represent a new avenue
of research for understanding how preferences can be used
in real world scenarios. This type of analysis, such as the
resilience of a particular preference representation, can help
to inform choices about which preference representation is
most useful for a given application and how well that repre-
sentation can handle uncertainty.
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