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Abstract

In recent years, Hypercomplex-inspired neural networks im-
proved deep CNN architectures due to their ability to share
weights across input channels and thus improve cohesive-
ness of representations within the layers. The work described
herein studies the effect of replacing existing layers in an
Axial Attention ResNet with their quaternion variants that
use cross-channel weight sharing to assess the effect on im-
age classification. We expect the quaternion enhancements to
produce improved feature maps with more interlinked repre-
sentations. We experiment with the stem of the network, the
bottleneck layer, and the fully connected backend, by replac-
ing them with quaternion versions. These modifications lead
to novel architectures which yield improved accuracy perfor-
mance on the ImageNet300k classification dataset. Our base-
line networks for comparison were the original real-valued
ResNet, the original quaternion-valued ResNet, and the Ax-
ial Attention ResNet. Since improvement was observed re-
gardless of which part of the network was modified, there is
a promise that this technique may be generally useful in im-
proving classification accuracy for a large class of networks.

Introduction
This work studies the effect of adding representationally
coherent layers to axial-attention networks to improve im-
age classification accuracy. In this work, a representation-
ally coherent layer means a layer with the ability to dis-
cover and represent cross-channel correlations in its inputs.
For a CNN, this leads to feature maps with improved rep-
resentational properties. This functionality is implemented
using calculations inspired by hypercomplex number sys-
tems such as quaternions (Gaudet and Maida 2018), vec-
tormaps (Gaudet and Maida 2021), and parameterized hy-
percomplex multiplication (PHM) (Zhang et al. 2021). In
this work, we study whether hypercomplex augmentation
can improve classification performance in axial-attention
networks, which have been shown to outperform CNNs
(Wang et al. 2020).

A core example illustrating the utility of representational
coherence comes from CNN auto-encoders, which can be
trained to reconstruct color from grayscale input. Parcollet
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et al. showed that the channel-based weight-sharing prop-
erty of a quaternion-valued auto-encoder allowed the dis-
covery of input correlations that supported the reconstruc-
tion of color from grayscale images, and this was not pos-
sible using a real-valued auto-encoder (Parcollet, Morchid,
and Linarés 2019). This result was subsequently confirmed
using a vectormap auto-encoder that used a similar form of
weight sharing (Gaudet and Maida 2021).

We hypothesize that this improved ability to capture re-
lationships between input channels may apply to other mul-
tidimensional input modalities besides color. It may depend
on whether the input data contains interwoven cross-channel
relationships to capture. We will say that layers that use this
form of hypercomplex-inspired weight sharing are represen-
tationally coherent.

Our experiments studied novel axial-attention networks
(Ho et al. 2019; Wang et al. 2020) by replacing existing lay-
ers with representationally coherent layers in three parts of
the network. These modifications included:

1. Enhance axial bottleneck blocks to use quaternion mod-
ules to increase their representational capacity.

2. Replace the fully connected, real-valued backend with a
4D parameterized hypercomplex multiplication layer.

3. Replace the real-valued convolutional stem with a
quaternion-valued convolutional stem.

We varied the depths of the original axial attention net-
works by using 26, 35, and 50 layers. In addition to the
axial attention networks, we compared our results to base-
line real-valued, and quaternion-valued ResNets. We found
that adding representationally coherent layers improved per-
formance over the standard ResNets, quaternion ResNets,
and standard axial-attention ResNets. The most notable im-
provement occurred by adding representational coherence to
the backend in the form of a 4D PHM layer.

Rationale for the Proposed Method
The main hypothesis of this paper is that multichannel fea-
ture map representations that are used as input to attention
modules can be modified to improve their effectiveness. Our
approach uses the output of quaternion modules to provide
improved input representations to the attention modules. The
rationale follows.



Parcollet et al. showed that a quaternion-valued, auto-
encoder can be trained to reconstruct color from grayscale
input images, whereas a real-valued autoencoder cannot
(Parcollet, Morchid, and Linarés 2019). Thus, a trained
quaternion-valued layer generates a richer representation be-
cause it allows implicit relationships among the color chan-
nels of data and these relationships cannot be captured in
a comparable real-valued auto-encoder. Parcollet et al., at-
tribute this functionality to a weight-sharing property found
in the Hamiltonian product (quaternion multiplication) that
is used to implement convolution (Parcollet, Morchid, and
Linarés 2019). This does not occur in real-valued networks.
The representation produced by the quaternion network cap-
tures more information about the interrelationships between
the color input channels, and in this sense, we can say that
it is a richer interwoven or interlinked representation of the
information contained in the input channels.

We hypothesize that this improved ability to capture rela-
tionships between input channels is likely to apply to other
multidimensional inputs besides color (Gaudet and Maida
2020). It may depend on whether the input data happens to
contain interwoven cross-channel relationships of this kind
to capture. In the remainder of this paper, we use the term in-
terwoven/interlinked representation or feature map to refer
to the output of a quaternion layer.

Background and Related Work
Quaternion Convolution
A useful introduction to quaternion algebra and neural net-
works appears in (Parcollet, Morchid, and Linarés 2020).
Trabelsi et al. extended the principles of convolution, batch
normalization, and weight initialization from real-valued to
complex-valued networks (Trabelsi et al. 2018). Gaudet and
Maida, in turn, extended these principles to QCNNs (Gaudet
and Maida 2018). For implementation purposes, quaternion
calculations can be decomposed into operations on 4-tuples
of real numbers. The take-home message from this is that a
quaternion convolution module must accept four input chan-
nels. A quaternion layer can accept more than four input
channels, say m, as long as m is a multiple of four. In this
case, the layer must hold m/4 separate QCNN modules,
each with its own weight sets.

Parcollet et al. analyzed the Hamilton product, where the
Hamilton product of I and Q is Oq = Iq ⊛ Wq , where the
subscripts q indicate that I, W, and Q are quaternion num-
bers. When expanded into real-valued 4-tuples, this can be
viewed as a linear mapping from a neural layer of four units,
representing Iq , to another layer of four units representing
Oq . However, instead of using 16 independent weights to
connect the layers, the four weights in Wq are repeatedly
substituted within the 16 weights, so the mapping only uses
four independent weights. This weight-sharing forces the
model to learn cross-channel interrelationships in the data.
More recently, Gaudet and Maida showed the properties
of the quaternion convolution were due entirely to weight
sharing and had no dependence on the quaternion algebra
(Gaudet and Maida 2020; 2021). The quaternion convolu-
tions in our model are 1x1, so they can be interpreted as

fully connected layers with shared weights.

PHM Layers
Parameterized hypercomplex multiplication (Zhang et al.
2021) is used for FC layers. The 4D PHM layer works
similarly to the quaternion layers. The Kronecker product
is used to construct the parameter matrix. The PHM-based
fully connected hypercomplex transformation, which trans-
forms the input x ∈ Rd into an output y ∈ Rk, is de-
fined as y = Hx + b, where H ∈ Rk×d represents the
PHM layer. H is calculated as H =

∑n
i=1 Ii ⊗ Ai where

Ii ∈ Rn×n and Ai ∈ Rk/n×d/n are parameter matri-
ces and i = 1 . . . n (n = 4). Parameter reduction comes
from reusing matrices I and A in the PHM layer. The ⊗
is the Kronecker product. For 4D, the inputs are split as
Qin = Qr + Qx + Qy + Qz and the outputs are merged
into Qout as Qout = Qro + Qxo + Qyo + Qzo as seen in
Figure 2. The 4D hypercomplex parameter matrix (Zhang et
al. 2021) expresses the Hamiltonian product for 4D by pre-
serving all PHM layer properties.

Axial-Attention Networks
As stated earlier, attention networks consisting of stacked
attention modules can learn to outperform deep CNNs and
hybrid CNN/attention models for image classification. This
stems from their ability to detect affinities between pix-
els having large spatial separation in the image. The draw-
back of using attention is that it is impractically computa-
tionally expensive, consuming O(N2) resources for an im-
age of length N (using a flattened pixel set) and using a
global window to compare any pair of pixels in the im-
age. For a 2D image of height, h, and width, w, where
N = hw, the cost is O((hw)2) = O(h2w2) to detect sim-
ilarities for any pair of pixels in the image (Ho et al. 2019;
Wang et al. 2020).

Axial-attention networks reduce the cost of computing at-
tention by decomposing the problem into consecutive 1D
operations. They were introduced in (Ho et al. 2019) for
generative modeling in auto-regressive models and use the
assumption that images are approximately square so that h
and w are both much less than the total pixel count, hw.
For simplicity, assume a square 2D image where h = w,
so w2 = N . Axial attention only operates on one dimen-
sion at a time. It is first applied to, say, the h axis and then
to the w axis. When applied to the h axis, then h = w
attention calculations are applied to a 1D region of length
h. Axial attention applied to the columns, h, performs w
self-attention operations on each column whose total cost is
O(h · h2) = O(

√
N ·N). This bound is the same for using

an axial column module followed by an axial row module.
Wang et al. incorporated axial attention into a ResNet ar-

chitecture (He et al. 2016) to develop the AANet, which re-
duced the computational requirements (described above) of
the original attention networks (Ramachandran et al. 2019;
Hu et al. 2019) used for image classification (Wang et al.
2020). The conversion from ResNet to Axial-ResNet was
based entirely on modifying the bottleneck blocks within
ResNet. Figure 1(a) shows the bottleneck block used in the
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Figure 1: Bottleneck types. “bn”, “attn”, and “quat” stand for batch normalization, attention, and quaternion, respectively. (a
and b) Original bottleneck modules found in ResNet (He et al. 2016), and Axial-ResNet (Wang et al. 2020), respectively. (c)
Our quaternion-enhanced (QuatE) axial-ResNet bottleneck block. (d) Our representational Axial-ResNet block (RepAA).

original convolution-based ResNet. Figure 1(b) shows the
axial-bottleneck block used in Axial-ResNet (Wang et al.
2020). The 3x3 2D convolution used in the original ResNet
is replaced by an axial attention module.

Our Models: Axial-Attention with Quaternion
Our models are based on the axial-attention model used in
(Wang et al. 2020) described above, but modified in the three
ways described in the introduction. Our first modification
enhances the bottleneck portion of AANet in two alternative
ways, seen in Figure 1(c) and (d). The original is shown in
Figure 1(b).

Figure 1(c) shows our first modification to the axial-
bottleneck blocks. The original is shown in Figure 1(b). It
inserts a bank of 1 × 1 quaternion conv2d modules in front
of the axial-attention module. In addition to this, it is possi-
ble to add a quaternion front end to the axial attention mod-
ule. The purpose of the front end is to generate potentially
more useful interlinked input representations for the bottle-
neck portion of the network. The number of input channels
to the quaternion bank must be a multiple of four. Hence, the
output channels of the top 1×1 conv2d module are split into
groups of four. One quaternion 2D convolution is applied to
each group of four channels. Each quaternion convolution
accepts four input channels and produces four output chan-
nels. Thus, the weight-sharing is compartmentalized into
groups of four input channels. The set of output channels
is merged (stacked) so that the number of input channels
to the axial-attention module is unchanged from the origi-
nal axial-attention block. In all other ways, the structure of
the bottleneck portion of our quaternion-modified model is
identical to the AANet model.

Figure 1(d) shows our second and final modification to
the axial-bottleneck block. We redesign the axial-bottleneck
block by removing the bank of 1 × 1 quaternion conv2d
(QCNN) modules from our first proposal (Figure 1(c))

and replacing 1 × 1 convolutional down-sampling and up-
sampling modules with a bank of 1 × 1 QCNN modules.
The set of output channels of down-sampled 1 × 1 quater-
nion is merged into input to the AANet modules, and the
output channels of AANet modules are split into groups
of four again for the 1 × 1 up-sampled quaternion layer.
One quaternion 2D convolution is applied to each group of
four channels. Thus, the weight-sharing is compartmental-
ized into groups of four input channels.

For better representation, the quaternion layer is also ap-
plied in the stem layer (the first layer of the network) as a
quaternion-based front-end layer and in the fully-connected
dense layer as a quaternion (PHM layer with four dimen-
sions) based back-end layer. To make a more interwoven
output representation in the bottleneck block of the network,
we also use quaternion layers in the axial-bottleneck archi-
tecture, which is described in Figure 1(d). We renamed this
full representation based AANets as RepAA networks which
are depicted in Figure 2.

Overview of Experiments
Our experiments studied novel architectures involving en-
hancements to the Axial Attention ResNet. Our first modi-
fication replaces the bottleneck blocks of the Axial ResNet
with the quaternion bottleneck blocks depicted in Fig. 1(c).
This converted 26 and 50-layer Axial Attention ResNets
into 33 and 66-layer quaternion-enhanced Axial Atten-
tion ResNets. We refer to instances of this architecture
as “QuatE-1”, short for “quaternion enhanced, version 1”.
Since these QuatE-1 networks were deeper as a result of us-
ing quaternion bottleneck blocks, we also assessed the per-
formance accuracy of a 35-layer unmodified Axial Attention
network as a control (Experiment 2).

The second architecture tested was the same as QuatE-1
but with the real-valued, fully connected backend replaced
by a 4D PHM layer (QPHM). We call this “QuatE-2”. Ex-



Figure 2: Proposed full representational axial-attention network with QPHM based FC layer. RepA stands for quaternion-based
axial bottleneck block (shown in figure 1 (right)). Here, Qin = Qr + Qx + Qy + Qz , H = Hr + Hx + Hy + Hz , and
Qout = Qro +Qxo +Qyo +Qzo are the input, hypercomplex parameterized weight, and output respectively.

periments with QuatE-2 give information about the effects
of using a quaternion-enhanced backend.

The third tested architecture replaced the 7×7 real-valued,
convolutional stem with a 7 × 7 quaternion-valued convo-
lutional stem. We also used the bottleneck block shown in
Fig. 1(d) instead of that in Fig. 1(c). That is, all possible
layers were replaced with quaternion versions. We call this
“RepAA” (representational axial attention).

Experiment 1
We compared our novel QuatE-1 model to three preexist-
ing baseline models on a subset of the ImageNet dataset,
called ImageNet300k, which we created (see below). Im-
ageNet300k was used because we lacked the computing
power to conduct simulations using the full ImageNet (Rus-
sakovsky et al. 2015).

Method
The baseline models are: the standard convolution-based
ResNet (He et al. 2016), the quaternion CNN (Gaudet and
Maida 2018), the axial-ResNet (Wang et al. 2020). The
main objective is to see if the representations generated by
quaternion-enhanced bottleneck blocks improve the classifi-
cation performance of axial-ResNet. We used a 26-layer ver-
sion with the block multipliers “[1, 2, 4, 1]” and a 50-layer
version with the block multipliers “[3, 4, 6, 3]” of the mod-
els. The bracketed expressions show the bottleneck blocks
with the operations used and the number of output channels
for each stage. If the quaternion modules are counted, then
the layer counts for our model are 33 layers and 66 layers, re-
spectively. We count the two-1D-layer axial-attention mod-
ule as one layer because two 1D layers are equivalent to one
2D layer.

It took over two hours to train one of the axial-ResNet

Model
Tra.
Acc. Params

Vali.
Acc.

Inf. time
(ms)

ResNet-26 57.0 13.6M 45.48 8.86
QCNN-26 64.1 15.1M 50.09 25.32
Axial-ResNet-26 61.0 5.7M 54.79 27.94
QuatE-1 (ours)-33 78.2 6.0M 62.30 31.75
ResNet-50 65.8 25.5M 50.92 14.70
QCNN-50 73.4 27.6M 49.69 50.01
Axial-ResNet-50 63.6 11.5M 55.57 52.35
QuatE-1 (ours)-66 72.6 11.9M 59.71 58.41

Table 1: Image classification performance on the Ima-
geNet300k dataset for 26- and 50-layer ResNet (He et al.
2016), Quaternion ResNet (QCNN) (Gaudet and Maida
2018), Axial-Attention (Wang et al. 2020), our proposed
QuatE1 Axial-Attention architectures. We use Top-1 train-
ing (Tr. Acc.) and validation (Vali. Acc.) accuracies.

models for one epoch on the original ImageNet. The smaller
ImageNet300k dataset uses lower computing resources and
uses the same 1,000 image categories as the original Ima-
geNet (Deng et al. 2009). The full ImageNet dataset has 1.28
million training images and 50,000 validation images. Our
smaller dataset is sampled from the full ImageNet by taking
the first 300 images for each category contained in the orig-
inal dataset, yielding 300,000 training images. The smaller
dataset uses the same 50,000 validation images with 50 im-
ages per category. Although the training dataset is smaller,
it still allows us to train our 50-layer networks without over-
fitting. Overfitting was assessed by examining performance
on the validation dataset compared to the training set. The
validation dataset was the same as the original one.

All models (Experiments 1, 2, and 3) were trained using
the same stochastic gradient descent optimizer and hyper-



Architecture Training Params Validation
ResNet 63.8 18.5M 48.99
Quaternion ResNet 70.9 20.5M 48.11
Axial-ResNet 73.6 8.4M 60.49

Table 2: Image classification performance on the Ima-
geNet300k dataset for 35 layer ResNet (He et al. 2016),
quaternion, axial-attention (Wang et al. 2020) architectures.
We use Top-1 training and validation accuracies.

parameters. All networks were trained for 150 epochs ex-
cept our proposed models, which were run for 90, and using
stochastic gradient descent optimization with momentum set
to 0.9 and a learning rate that was warmed up linearly from
ϵ near zero to 0.1 for 10 epochs. The learning rate was then
cut by 10 at epochs 20, 40, and 70. We adopt the same train-
ing protocol as (Wang et al. 2020) except for batch size. The
batch size was limited to ten because of memory limitations.
For attention models, the number of attention heads was set
to eight in all attention layers (Wang et al. 2020).

Architecture
Training

Top-1 Acc. Params
Validation
Top-1 Acc.

ResNet-26 57.0 13.6M 45.48
QCNN-26 64.1 15.1M 50.09
Axial-ResNet-26 61.0 5.7M 54.79
RepAA (ours)-26 73.0 3.7M 60.70
ResNet-35 63.8 18.5M 48.99
QCNN-35 70.9 20.5M 48.11
Axial-ResNet-35 73.6 8.4M 60.49
QuatE-1(ours)-33 78.2 6.0M 62.30
QuatE-2(ours)-33 75.5 5.3M 61.27
RepAA (ours)-35 72.0 4.6M 62.03
ResNet-50 65.8 25.5M 50.92
QCNN-50 73.4 27.6M 49.69
Axial-ResNet-50 63.6 11.5M 55.7
QuatE-1(ours)-66 72.6 11.9M 59.71
QuatE-2(ours)-66 77.8 11.1M 62.46
RepAA (ours)-50 73.5 6.7M 62.49

Table 3: Image classification performance on ImageNet300k
for 26, 35 and 50-layers ResNet (He et al. 2016), Quaternion
ResNet (QCNN) (Gaudet and Maida 2018), Axial-Attention
(Wang et al. 2020), our first modification (QuatE1), our sec-
ond modification (QuatE2) architectures. We include Top-
1 training and validation accuracies and parameter count.
“QuatE” and “RepAA” stand for quaternion enhanced and
representational axial-attention.

Results
The main results are in Table 1. The top half of the ta-
ble shows the results for the 26-layer models (33-layers
for the QuatE-1 model). The bottom half shows the results
for the 50-layer models (66 layers for QuatE-1). Reported
are the parameter count, inference time, and percent accu-
racy for a single simulation run for each model. Both axial-
ResNets use far fewer parameters than the convolution-

based ResNets.
The most important comparison is between the axial-

ResNet and our QuatE-1, as this directly shows the effect of
the quaternion-generated interlinked representations. There
are two such comparisons, one for the 26/33 layer models
and the other for the 50/66 layer models. In both cases,
the quaternion-enhanced versions produced higher classi-
fication accuracy on both the training and validation data.
This supports our main hypothesis that quaternion modules
can produce more usable interlinked representations. There
is an alternative explanation that the quaternion-enhanced
axial-ResNet had more layers, and this caused better perfor-
mance. This is addressed in Experiment 2.

Another result is that both axial-ResNet architectures pro-
vide higher performance for the validation set than either of
the convolution-based ResNets. This is true for both the 26-
layer (33-layer) and 50-layer (66-layer) versions.

Finally, it is surprising that the 33-layer QuatE-1 axial-
ResNet gives better classification accuracy than the 66-layer
version. This is true for both the training and validation data.
We have no explanation for this. If this were only true for the
validation data, then overfitting would be a possible expla-
nation. This is addressed in Experiment 3.

Experiment 2
In Experiment 1, adding the quaternion frontend to the axial
attention module increased the number of layers from 26 to
33 for the small network and from 50 to 66 for the large one.
This offered an alternative explanation for better classifica-
tion accuracy. The improvement might have been caused by
the increased number of layers and not the added quaternion
bank. Experiment 2 tests this explanation.

Method
This experiment increases the layer count of the baseline
networks from 26 to 35 layers. This was done by using a
block multiplier of “[2, 3, 4, 2]” for these models. Although
this did not give us exactly 33 layers to exactly match the
QuatE-1 axial-attention model, it preserved the bottleneck
structure of the original design and enhanced comparability.

Results
Table 2 shows the parameter count and accuracy for these
35-layer models. The most important comparison is the 35-
layer Axial-Attention Network in Table 2 with the 33-layer
QuatE-1 Network in Table 1. Now the layer count for the
non-quaternion version is slightly larger than that for the
quaternion version, but the quaternion version still gives bet-
ter performance on both the training and validation accu-
racy. The increased layer count did improve the performance
of the 35-layer Axial Attention Network but not enough to
surpass the quaternion version. Thus, we conclude that the
quaternion blocks have more impact than the layer count.

Experiment 3
Table 1 shows that the 33-layer QuatE-1 model gave better
classification accuracy than the 66-layer version. To address
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Figure 3: Training and validation performance of original quaternion ResNet, original axial-attention network, our QuatE-2
axial ResNet with QPHM, and our RepAA method (50-layers version) to assess possible overfitting for ImageNet300k dataset.

this, we performed another experiment using the QuatE-2
and RepAA networks on the ImageNet300k dataset.

Method
This experiment used 26-layer, 35-layer, and 50-layer archi-
tectures with the same multipliers and we trained the net-
works using the same hyperparameters as in Experiment 1.

Results
Table 3 collects the overall results for the 26, 35, and
50-layer architectures. The performances of QuatE axial-
ResNets with QPHM in the back-end, and RepAA networks
are compared in Tables 1, 2, and 3. Among them, our final
proposed method performs best in validation accuracy and
parameter count.

Figure 3 assesses the overfitting problem by examining
the accuracy of the validation dataset in comparison to the
training dataset and shows there is no overfitting for the Ima-
geNet300k dataset. The most important comparisons are be-
tween the QuatE-2 axial-ResNet and our RepAA model, and
axial-ResNet and RepAA model as these directly show the
effect of removing extra 1× 1 quaternion layer from QuatE
axial-ResNet and applying cross-channel weight sharing
throughout the attention network. In both cases, the RepAA
networks outperformed in terms of accuracy and parameters.

Although we ran our model for only 90 epochs, which is
less than the other models, its performance was unchanged
beyond 90 up through 150 epochs. Unlike the QuatE-1 axial-
ResNets, the validation performance of QuatE-2 for 66 lay-
ers is higher than the 33 layers (shown in Table 3). Also,
the validation performance of RepAA for 35 layers is higher

than the 26 layers, and 50 layers outperformed the oth-
ers (shown in Table 3). This supports our main hypothe-
sis; quaternion modules can produce more usable interlinked
representations.

Conclusions and Future Work
We replaced traditional modules with representationally co-
herent modules in the stem, the bottleneck blocks, and the
fully connected backend. All of these novel modifications
improved accuracy to varying degrees when trained and
tested on the ImageNet300k dataset. Our baseline networks
for comparison were the real-valued ResNet, the quaternion
CNN, and the Axial Attention ResNet.

Our results are significant because the improvement was
observed when any part of the network was modified to use
representational coherence. This suggests that this technique
may be generally useful in improving classification accu-
racy for a large class of networks. This work was limited
to the ImageNet300k dataset due to machine limitations and
was not able to evaluate low-resolution datasets like CIFAR
benchmarks as attention models require a large number of
high-resolution data to handle the overfitting. More work
may be directed at testing other architectures to assess this
claim. Further work should also be directed toward checking
if these results hold up on other datasets.

Finally, vectormaps and PHM layers offer more fine-
grained control over weight sharing than quaternions. For
quaternions, four weights are distributed over 16 slots, di-
minishing the weight count ratio to 25%. Since vectormap
and PHM operations are not constrained to four dimensions,
other weight count ratios can be tested.
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