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Abstract

Perception, the process of comprehending and deriving
meaning from one’s surroundings, is fundamental to human
decision-making. In this context, we explore the development
of a robust perception model designed for mobile robots to fa-
cilitate effective human-robot communication and decision-
making in dynamic and intricate scenarios. Achieving local-
ization without GPS in a network of roads using stratified se-
quential importance sampling where the stratification levels
are based on semantic object spaces in the map and on the
running time, we articulate and describe the proposed devel-
opment and experimentation environment, demonstrating the
potential of our perception model.

Introduction
A multi-modal interactive service and rescue robot capable
of communicating with humans in complex environments is
our aim where localization and perception in a complex sit-
uation is an essential step. Robotics perception is the mak-
ing sense of an unstructured real world, where incomplete
knowledge of objects and scenes may lead to imperfect ac-
tions and ultimate failures. Making contact with the physical
world through multi-modal senses (Lafuente-Arroyo et al.
2024) and completing desired tasks in a human-robot team-
ing is our ultimate goal.

We present a novel semantic localization (Martı́nez-
Gómez et al. 2016) framework for robots without GPS in a
multi-road map. Particle filtering is the common approach
for many types of localization, but tuning parameters for
achieving high quality results can be complex in certain ap-
plications. The new framework is supported with a bench-
mark generator including an environmental feature gen-
erator and stratified sequential importance sampling (SIS)
based particle filter localizer where the stratification levels
are based on semantic object spaces on the map and on the
running time.

Benchmark Generator
An experiment was designed based on a dedicated sim-
ulator and a set of randomly generated benchmarks in a
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symbolic space. As such, first a space of symbolic seman-
tic maps (Chen, Li, and Zhang 2023; Dube et al. 2020)
was selected for the experiment. Each semantic map con-
sists of a road graph from which one path is selected as
the planned trajectory of the robot. The spatial size asso-
ciated with the observability of each map object ω is de-
noted |ω|, and is generated from a uniform distribution X ∼
U(ωmin, ωmax), and the object types come from a symbolic
space Ω. A set of such benchmark maps is created using a
contiguous sequence of seeds for the Knuth’s linear congru-
ential pseudo-random number generator (Knuth 2014).

Observation Histories Under the assumption that the
robots will use standardized sensors, and also assuming a
fixed trajectory history up to the point of decision, the bench-
marks also contain logs of observation histories. A bounded
space Γ of symbolic observations is selected allowing for
a controlled amount of confusion between the map objects.
Confusion is parameterized by a coefficient γ. Observations
are assumed to be drawn from a known mixture distribu-
tion obtained by combining three uniform distributions with
standard deviation correlated to γ. The obtained confusion
amount is related to the boundness of the feature space.

U(µ−γ, µ+γ)P1+U(µ−2γ, µ+2γ)P2+U(Γ)(1−P1−P2)

where in tests, P1 = 0.75 and P2 = 0.175, and µ is ran-
domly associated with the objects at the current location in
the semantic map space Ω, uniformly distributed in Γ.

For each benchmark, the generator produces a prefix of
the selected path with potential deviations into the rest of the
road graph, and a history H of observations produced based
on the aforementioned generative model, to an intermediary
point obtained according to a specification λ, point which
may or may not be on the selected path in the map.

The localization in each benchmark map is performed
with our dedicated simulator that uses a particle filter fed
with the observations H in the benchmark, and hypothesis-
ing into the states S defined by the map. S is discrete, where
|S| is variable but bounded by the size of the Cartesian prod-
uct of semantic objects and past running time steps.

Particle Filter Parameters
The Particle Filter simulator assumes that the observation
emission probability distribution function is as described



above, and uses it to weight samples. The transition prob-
ability from state ω to adjacent state ω′ on the map is based
on state proximity on the map and on the duration of travel,
according to a bounded linear distribution X ∼ L(0, σ|ω|),
with inflection point at |ω|, scaled with parameters σ, tuned
as described in subsequent test graphs. The transition prob-
ability distribution is one of the most sensitive factors in the
stability of the results.

Resampling is based on stratified sequential importance
sampling where the stratification levels are based on seman-
tic object spaces in the map and on the running time. Also,
a probability mass redistribution to unpopulated states is
performed, accounting for 0.0001% of the total probability
mass and including at least one particle per state.

Objects Target Particles Error Seeds

50

25 1000

0 89
1 9
2 1

offroad 1

35 1000

0 92
1 6
2 1

offroad 1

45 1000

0 90
1 7

2,3 2
offroad 1

50

25 100

0 89
1 9
2 1

offroad 1

35 100

0 88
1 9
2 1

offroad 1

45 100

0 89
1 8

2,10,34 3

1000

700 100

0 75
1 8
7 2

67-292 6
offroad 9

900 100

0 74
1 11
7 2

2-704 5
offroad 10

Table 1: Results on benchmarks by history duration. For
each seed, a separate benchmark was generated. The last
column specifies the number of seeds (benchmarks) with
the same results. The column Error shows the displacement
from target in state space.

Results As shown by the preliminary results in the ta-
bles 2 and 3, the performance is very sensitive to transition

Objects Target Particles σ Error Seeds

1000

900 100 1

0 74
1 11
7 2

2-704 5
offroad 10

900 100 1.5

0 73
1 17

201-863 5
offroad 6

900 100 2

0 53
1 16

48-712 12
offroad 19

Table 2: Results by transition distribution.

Objects Target Particles Features Error Seeds

50

35 100 4

0 88
1 9
2 1

offroad 1

35 100 10

0 87
1 10

9,11 2
offroad 1

35 100 20
0 69
1 28

2,4,11 3

Table 3: Results by standard deviation of acuity distribu-
tions.

probabilities. The observation probability model is also im-
portant but when the transition model is good, the sensitivity
to the observation model is reduced. The behavior was also
tested with millions of particles where the performance was
not significantly modified but the execution of our simula-
tion implementation took several seconds per benchmark.
The performance only slowly decreases with the increase in
the number of objects in the semantic map.

When the localization algorithm decided that it arrived at
a point in the map that was not on the actual trajectory, the
situation is described in tables as offroad. With much bigger
maps, the outliers can be far away from the actual trajectory.

Conclusion
A motivating problem is introduced including perception by
sensor fusion for localization in networks of roads without
GPS. An abstract framework is developed for formalizing
this problem enabling the construction of benchmarks and
objectively comparable algorithms. Benchmark generators
and a baseline solution are provided to open the way for
a principled and scientific approach of the problem by the
community. Results evaluated according to a proposed per-
formance metric for the baseline solution are provided and
shown to launch a competitive area where significant quan-
tifiable improvements are possible in future research.
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