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Abstract

Visual scene understanding can benefit from inputs
provided by multiple participants with their different
perspectives, and a distributed version of a modified
Waltz filtering enriched with modern AI inferences can
potentially help accuracy and speed trade-offs by ex-
ploiting the simultaneous perspectives and logic. Speed
is improved by the contribution of the implicit paralleli-
sation in processing. Accuracy improvements are ex-
pected from updating constraints with novel and more
powerful inferences that the participants can apply.
Automatically understanding scenes is a highly rele-
vant problem. Multiple robots communicate with one
another to classify shapes of edges of an object. Local
reasoning can reduce communication latency.

Introduction

The Distributed Enriched Waltz Filtering technique
draws inspiration from the classic Waltz algorithm,
which was initially proposed for solving the graph vi-
sion problem (Waltz 1975; Bessiere et al. 2005; Balafrej
et al. 2014).

In scene understanding, the goal is to improve the ac-
curacy of interpretation of objects or segments within
an image or video frame. Traditional filtering tech-
niques often focus on local data and relationships, but
Distributed Enriched Waltz Filtering takes a more col-
laborative and global approach.

Work on line drawings interpretation by propagation
of constraints was proposed in (Huffman 1971). The
problem that was solved using the above technique is
as follows: given a 2-D line drawing representing a col-
lection of polyhedral blocks on a table, Guzman label-
ing tries to determine which faces (bounded regions
in the drawing) go together as parts of the same ob-
ject (Guzman 1968). An early theoretically and ex-
perimentally analysis of chaotic collaboration was con-
tributed in (Arbab and Monfroy 2000) with respect to
general constraints.
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Problem Formulation
Our problem can be formalized as follows. We have a
set of n participant agents (robots), A = {A1, ..., An}.
Each of them is surveying the scene for a set of m salient
items of interest denoted:

The items (vertices in Waltz graphs) are associated
with features that make the pairing between items from
various agents probabilistic with the function Pij(x)
specifying whether for agent i the item x actually cor-
responds to the item Ij .

Robots observe subsets of items (patterns of salient
features corresponding to Waltz graph vertices) and
maintain an interpretation of the scene as a set of edges
between some of the items: E ⊆ {(i, j, τ)|i, j ∈ I, τ ∈
Θ} (Cieslewski, Choudhary, and Scaramuzza 2018;
Mallya and Lazebnik 2015).

Each edge between two items i and j is labeled with
a tag τ , from a set Θ, specifying one of the Waltz re-
lations. The relations are W = {+,−,→,←}, where +
denotes a concave edge with planes being closer to the
viewer than the edge itself, − denotes a convex edge
with planes being farther to the viewer than the edge
itself, → with the lower plane being hidden behind the
higher plane, and← with the higher plane being hidden
behind the lower plane.

The agents exchange messages describing changes in
their perception of the items and edges, changes that
are due to additional inspection or modification of per-
spective. A message has the format M = 〈IT , ET 〉,
where IT is a set of items together with their observed
instance features, while ET is a set of edges between
items in IT , as perceived at moment T (Khan and Al-
Habsi 2020). The features on IT specify information
such as absolute 3D position in space, a segment in
space containing the item, and color. Features enable
receiving participants to estimate the matching proba-
bility between items coming from different observers.

In environments without noise, ambiguous similarity
between items, and imperfect information, the problem
is to determine a consistent interpretation for all items
and edges in the scene, as well as an interpretation for
each edge facet as either a material area or an empty
space (Gaschnig 1978). In case of uncertainty, noise,
and ambiguity, an optimization process is obtained.



Distributed Star Topology Algorithm

on Init(R): /* The sequence for each
robot on start */

The robot takes an image (image with the
potential vertices and edges extracted) ;

Robot filters the edges interpretations using
the Waltz filter for a single process;

Sends the output OR = {(i, j, l)|i, j ∈ I} to
the central supervisor.;
Algorithm 1: Initialization of Robots

In a first version, robots are connected in a star-
topology with one of them as a supervisor. In the Al-
gorithm 1 the robot then takes an image of the object
under examination. Using the EnrichedWaltz filter in-
spired from (Richter and Roth 2018) the robot com-
putes the edges as a single process. It then sends the
output of this result back to a central supervisor.

def Supervisor():
forever (;;) :

Get the messages OR from all robots R;
Composes the available data:
O = filterR (OR);
if no change then

terminate;
Send message Data(O) to all robots;

Algorithm 2: Algorithm Supervisor Star Topology

In the Algorithm 2 the Supervisor gets the messages
of the current round from all the robots. The supervi-
sor’s role is to then aggregate the data it receives from
all the agents. It sends the aggregated data back.

on Data(D):
Project data D on relevant perspective and
run EnrichedWaltz on the data D;

Sends the output OR = {(i, j, l)|i, j ∈ I} to
the central supervisor.;

Algorithm 3: Message handling by robots

In Algorithm 3 robots run an EnrichedWaltz filter on
the data and send the output of the data to the central
supervisor. The last two processes repeat until con-
vergence, which is guaranteed by the monotonicity and
finite space of possible EnrichedWaltz interpretations
for edges.

Algorithm for a Mesh
Another approach is to use a mesh communication be-
tween equal robots. In the Algorithm 4 each robot in
the Mesh Network gets the edges from the filtering Al-
gorithm, using the labeling sent to its neighbors.

In Algorithm 5, the labelings from the Mesh Neigh-
bors are integrated into the aggregate and the Enriched-
Waltz filtering Algorithm is rerun to check if there is
any inconsistency. The output is sent to all neighbors.

on Init:
Take image I;
E = edges(I);
Labeling L = EnrichedWaltz(E);
send Labeling(I) to mesh neighbors;

Algorithm 4: Init Mesh

on Labeling(D):
Integrate D with local labeling L;
Run EnrichedWaltz on L;
if there is any modification to L then

Sends the output L = {(i, j, l)|i, j ∈ I} to
all the neighbors.;

end
Algorithm 5: Message Handling on Mesh

Lemma 1 The Algorithm 5 converges to the minimal
consistent labeling, and the processing eventually termi-
nates when the set of robots is connected.

Proof The termination is due to the fact that the possi-
ble labelings are discrete and finite, and EnrichedWaltz
only reduces the set labels. Stability and termination
is guaranteed by the property of strict monotonicity.

Experimental Results

For the case of perfect information and 4 robots viewing
a cube, we have simulated the implementations of the
discussed communication models.

So far we have only analyzed the obtained computa-
tion time in simulator. The summarized results are:

Conclusion
We introduce a framework model for robots that collab-
orate to refine understanding of scenes by Distributed
EnrichedWaltz Filtering. We have studied a compari-
son between two collaboration models. Improvements
in speed and accuracy are enabled. Actual experiments
are being run with the above frameworks and prelimi-
nary results will be presented with our poster.
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