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Abstract

Our understanding of the world is intricately linked to
both the spatial arrangement of objects and the tim-
ing of events. Knowledge-dependent systems employ
mechanisms like Qualitative Spatial and Temporal Rea-
soning (QSTR) to effectively process and interpret this
information. This article explores application of QSTR
in data clustering, offering several contributions. These
include introducing a formal clustering framework for
qualitative data, implementing a satisfiability encoding
to compute a clustering, introducing two appropriate
distance measures for Qualitative Relation Networks,
and experimentally validating through adaptations of k-
means and Hierarchical Agglomerative Clustering algo-
rithms.

Introduction
Recognizing patterns within complex data is crucial for
understanding intricate information. Clustering, a process
rooted in discerning inherent structures based on similari-
ties (Kaufman and Rousseeuw 2009), and deals with diverse
data forms such as numeric, graphs (Schaeffer 2007), im-
ages (Chang et al. 2017), texts (Aggarwal and Zhai 2012), or
symbolic data (de Carvalho, Csernel, and Lechevallier 2009;
Boudane et al. 2017; Kejžar, Korenjak-Černe, and Batagelj
2021).

Qualitative Spatial and Temporal Reasoning is an AI sym-
bolic framework that is closely aligned with human reason-
ing, making it easier to interpret extracted knowledge when
dealing with complex data. By employing formalisms like
Point Algebra (PA) (Vilain, Kautz, and Van Beek 1990), In-
terval Algebra (IA) (Allen 1983), and Region Connection
Calculus (RCC) (Randell, Cui, and Cohn 1992) via qualita-
tive relations, QSTR effectively models and reasons about
spatio-temporal knowledge across various domains.

Utilizing qualitative relations as an intermediary represen-
tation, QSTR can endow users with an explanatory capabil-
ity to uncover the rationale behind cluster formation. This
facilitates generating insights from data structures, enhanc-
ing understanding of discovered patterns. For similar rea-
sons, qualitative approaches have been employed in the field
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of data mining and knowledge extraction (Wang et al. 2018;
Salhi 2019; Homem et al. 2020; Boukontar, Condotta, and
Salhi 2022).

Our contributions in this article are manyfold. First, we
introduce a formal framework for accomplishing the clus-
tering task in QSTR. Second, we propose a Boolean Sat-
isfiability (SAT) encoding to verify the feasibility of build-
ing a clustering comprising exclusively consistent clusters.
Third, we introduce distance measures specific to QSTR for
their use with conventional clustering algorithms. Finally,
we conclude with an experimental study of our framework
using an adaptation of the k-means algorithm.

Data Clustering
Let X = {x1, x2, . . . , xn} represent a finite non-empty
set of items referred to as data instances. In traditional
data clustering, each data instance xi comprises a vector of
m features (xi,1, xi,2, . . . , xi,m) where xi,j ∈ R. Cluster-
ing data instances aims to maximize similarity within clus-
ters and minimize similarity between them (Aggarwal and
Reddy 2013). Similarity, commonly measured using dis-
tance metrics like Euclidean and Manhattan distances, eval-
uates how close or similar data instances are from each other
(Sinwar and Kaushik 2014). Similarity can also be expressed
as a coefficient (Goyal and Aggarwal 2017) like Simple
Matching coefficient, or Hamming coefficient, providing an
other perspective by quantifying the number of shared fea-
tures between two data instances relative to the total number
of features. Alternatively, when it is suitable to dismiss the
paired absence of features in the data instances, Jaccard’s co-
efficient emerges as an alternative (Ferdous and others 2009;
Irani, Pise, and Phatak 2016).

Hierarchical clustering methods like the widely-used
Hierarchical Agglomerative Clustering (HAC) algorithm
(Murtagh and Contreras 2012), progressively forms clus-
ters in ascending order. Starting with each data in-
stance in its own cluster, the algorithm iteratively merges
the two closest clusters using a chosen linkage tech-
nique until all instances belong to a single cluster.
Various linkage techniques, such as the single linkage
method, which evaluates similarity between two clusters
Pe,Pf as dissingle(Pe,Pf ) = min

xi∈Pe,xj∈Pf

d(xi, xj) (Yim

and Ramdeen 2015; Jarman 2020), consider the minimum



pairwise distance between data points in the clusters. Other
techniques are detailed in (Nielsen 2016).

Partitional clustering methods (Celebi 2014), differ from
hierarchical approaches by aiming to create a clustering into
a predefined number of clusters k, optimizing a specific ob-
jective function to form these k clusters. One well-known
partitional clustering method is the k-means algorithm (Kr-
ishna and Murty 1999). It begins by initializing k cluster
centers, either arbitrarily or using methods studied in the lit-
erature (Celebi, Kingravi, and Vela 2013). In each iteration,
data instances in X are assigned to the nearest cluster based
on the distance to the center. New cluster centers are then
recalculated based on the assigned points. This iterative pro-
cess continues until convergence, resulting in a clustering
into k clusters.

Qualitative Spatial and Temporal Formalisms
Spatial and temporal formalisms are designed to represent
and reason about entities like points, lines, intervals, and re-
gions. In this context, let B be a set of base relations de-
scribing relationships on a perceived domain of entities O.
B forms a partition of O × O, includes the identity relation
idB = {(x, x) | x ∈ O}, and is closed under the converse
relation −1, where b−1 = {(y, x) | (x, y) ∈ b} for all b ∈ B.
One base relation from set B can represent definite knowl-
edge between any two entities, while indefinite knowledge
can be described by the union of possible base relations be-
tween the entities. This union of base relations is referred
to a qualitative relation or simply a relation. It will be rep-
resented by the set of its included base relations. Thus, the
set 2B represents the relations in the qualitative formalism
based on B. Within the relations of 2B, the particular rela-
tion B is known as the universal relation representing the
absence of any information between two entities. This rela-
tion is always satisfied for any pair of entities. On the other
hand, the relation {} is called the empty relation and is never
satisfied. The set of relations 2B is equipped with the usual
set-theoretic operations (intersection and union). Moreover,
the weak composition is defined by: for all r, r′ ∈ 2B,
r ⋄ r′ = ⋃

b∈r,b′∈r′{b ⋄ b′} (Renz and Ligozat 2005) where
b ⋄ b′ = {b′′ ∈ B | ∃x, y, z ∈ O with (x, y) ∈ b, (y, z) ∈ b′,
and (x, z) ∈ b′′}.

For instance, Interval Algebra (IA) (Allen 1983) is a for-
malism for temporal reasoning using binary relations be-
tween time intervals: {eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}
(see Figure 1), while Point Algebra (PA) involves binary re-
lations between points on a line (<,=, >).
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Figure 1: The thirteen base relations of IA.

The Region Connection Calculi (RCC) (Randell, Cui, and

Cohn 1992) are widely used for spatial qualitative reasoning.
It is based on binary topological relations between regions.
Two well-known formalisms are the RCC-5 (see Figure 2)
and RCC-8 (Bennett 1994).
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Figure 2: The five base relations of RCC-5.

Qualitative information about a set of entities can be mod-
eled as a Qualitative Relation Network (QRN).

A QRN is an ordered pair N = (V,R) where V is a set of
(spatial or temporal) entities and R is a function associating
a relation in 2B to each element (i, j) of V ×V s.t. R(i, i) =
idB and R(j, i) = (R(i, j))−1.

A scenario is a QRN where R(i, j) represents exactly one
base relation for each (i, j) of V × V .

Given N1 = (V,R1) and N2 = (V,R2), we define N1 ∩
N2 as the QRN (V,R) where R(i, j) = R1(i, j) ∩ R2(i, j)
for each (i, j) of V × V .

A QRN N = (V,R) is consistent if there exists a solution
s, i.e. a function from V to the domain O such that, for every
(i, j) ∈ V ×V , (s(i), s(j)) ∈ b for some b ∈ R(i, j). Hence,
the consistency problem is equivalent to the problem of de-
termining whether a QRN has a consistent scenario. Solving
the consistency problem is NP-complete in general, whereas
is polynomial for the Point Algebra formalism (Van Beek
1992).

A qualitative database (q-database) is defined as a finite
set of QRNs.

Figure 3 is an illustration of a qualitative database D of 4
QRNs describing 4 spatial entities using the RCC-5 formal-
ism. For the sake of simplicity, idB loops (R(i, i)), converse
relations and universal relations are omitted, and a node i is
omitted iff for every j ∈ V \ {i}, R(i, j) = B.
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Figure 3: Example of a qualitative database.

QRN Clustering
Within a q-database D, our main goal is to identify clusters
based on shared solutions.
Definition 1 (Consistent Partition). Given a q-database D
and a positive integer k, a consistent k-partition of D is a
partition P of D s.t. |P| ≤ k and

⋂
N∈A N is consistent for

each A ∈ P .
It is important to emphasize that the presence of an incon-

sistent QRN in D consequently leads to the absence of any
consistent partition of D.



Theorem 2. Let Q be a QSTR formalism. If the consistency
problem in Q is NP-complete, then the problem of determin-
ing whether a q-database admits a consistent k-partition is
NP-complete.

Proof. Clearly, if q-database D admits a consistent partition
with an arbitrary size, then it admits a consistent k-partition
with k ≤ |D|. A proof that a q-database D admits a k-
partition can be a set of the form {(A1, σ1), . . . , (Al, σl)}
where l ≤ min(k, |D|),{A1, . . . , Al} is a partition of D, and
for every 1 ≤ i ≤ l, σi is a solution of

⋂
N∈Ai

N , which
is verifiable in polynomial time (the consistency problem is
in NP). Hence, the positive instances of the consistent parti-
tion problem admit proofs that can be verified in polynomial
time. Consequently, the problem of determining whether a
q-database admits a consistent k-partition is in NP.

To show NP-hardness, we only need to observe that a
QRN N is consistent iff the q-database {N} admits a con-
sistent 1-partition.

Definition 3 (QRN Clustering). Given a q-database D and
a positive integer k, a k-clustering of D is a set C ⊂ 2D

where:
• EXHAUSTIVENESS.

⋃
A∈C = D

• BOUNDED-SIZE. |C| ≤ k

• MUTUAL-EXCLUSIVITY. for every A,A′ ∈ C if A ̸= A′

then A ∩A′ = ∅
• CONSISTENCY. if D admits a consistent k-partition, then

for every A ∈ C, ⋂N∈A N is consistent.
The Exhaustiveness postulate expresses that every QRN

within the database D should manifest within the cluster-
ing. The Bounded-Size postulate expresses that the number
of clusters must not surpass k. The Mutual-Exclusivity pos-
tulate declares the absence of any two clusters sharing the
same QRN. Finally, the Consistency postulates affirm that
each cluster maintains consistency, i.e. the QRN defined as
the intersection of the QRNs of the cluster is consistent.

The subsequent proposition is a direct consequence of the
definitions of consistent partition and QRN clustering.
Proposition 4. If C is a consistent k-partition of a q-
database D, then C is k-clustering of D.

Consistent Partition Computation
The Boolean Satisfiability Problem (SAT) consists in deter-
mining whether a CNF formula is satisfiable, i.e. there exists
an assignment of truth values to the Boolean variables of the
formula that satisfies the formula. A propositional formula in
Conjunctive Normal Form (CNF) is a conjunction of clauses
where a clause is a disjunction of literals, and a literal is ei-
ther a variable or the negation of a variable.

We present in this section the SAT encoding of the prob-
lem seeking to determining whether a q-database admits
a consistent k-clustering. We emphasize that the use of
the path-consistency (PC) method on the QRNs of the q-
database, consisting in the calculation of the closure by weak
composition can reduce the size of the QRNs by removing
basic relations that do not satisfy PC, which can be an im-
provement when aiming to achieve consistent clusters.

Let D = {N1,N2, . . . ,Nn} be a q-database and k a pos-
itive integer.

To define our encoding for the instance (D, k), we asso-
ciate a propositional variables xb

ij with each base relation
b ∈ B and each ordered pair of variables (i, j) such that
i < j. Moreover, for every QRN Nα , we consider k addi-
tional variables y1α, . . . , y

k
α . Intuitively, if yβα is set to true,

then Nα belongs to the βth part. This encoding is an adapta-
tion of the one given in (Pham, Thornton, and Sattar 2008).

For each α ∈ {1, . . . , n} and each β ∈ {1, . . . , k}, we use
Φβ

α to denote the conjunction of the following two formula:∧
i,j∈V
i<j

∨
b∈Rα(i,j)

xb
ij (1)

∧
b∈Rα(i,j)
b′∈Rα(j,k)

(xb
ij ∧ xb′

jk →
∨

b′′∈Rα(i,k)∩(b⋄b′)

xb′′

ij ) (2)

for every i, j, k ∈ V with i < j < k

It is wroth noting that Φβ
α is satisfiable iff Nα is consistent

in the βth part.
The first formula of our encoding states that if yβα is true,

the QRN Nα belongs to the βth consistent part:

yβα → Φβ
α (3)

for every α ∈ {1, . . . , n} and β ∈ {1, . . . , k}
The second formula ensures that every QRN in the q-
database belongs to at least one consistent part:∧

1≤α≤n

(
∨

1≤β≤k

yβα) (4)

We use ConsPart(D, k) to denote the encoding that consists
of the conjunction of (3) and (4).

Using Formula (3), we have for every α ∈ {1, . . . , n}
and every β ∈ {1, . . . , k}, if yβα is true then Φβ

α is also true,
and consequently the QRN Nα is in the βth consistent part.
Formula (4) implies that every QRN in D belongs to at least
one consistent part, thus, D admits a consistent k-partition.

Measuring the distance between two QRNs
In this section, we introduce distance measures designed
specifically for QRNs, with the intention of integrating them
into established clustering algorithms. Notably, these mea-
sures are inspired by the inconsistency measures introduced
in (Condotta, Raddaoui, and Salhi 2016).

The subsequent measures depend on solving the Partial
MaxSAT problem, a variation of the SAT problem involving
two sets of clauses, Σ1 and Σ2. The objective is to find the
largest subset of soft clauses (Σ1) that can be satisfied along
with all the hard clauses (Σ2), where soft clauses are de-
sirable but not mandatory, and hard clauses are clauses that
must be satisfied.
Definition 5 (R-Relaxation). Let N = (V,R) be a QRN.
A R-relaxation of N is a QRN N ′ = (V ′, R′) s.t. V ′ = V
and N ⊆ N ′. A R-relaxation is said to be consistent if it
corresponds to a consistent QRN.



We use ConsRR(N ) to denote the set of consistent R-
relaxations of N . Moreover, given a R-relaxation N ′, we use
diff(N ,N ′) to refer to the set of ordered pairs of variables
{(i, j) ∈ V ×V : i < j, N [i, j] ̸= N ′[i, j]}. It follows from
definition 5 the following distance measure:

• Drr(N ,N ′) = min{|diff(N ∩ N ′,N ′′)| : N ′′ ∈
ConsRR(N ∩N ′)}

The measure Drr counts the minimum number of con-
straints that have to be changed to recover consistency.

We now introduce a Partial MaxSAT encoding for com-
puting Dcr(N ,N ′). Let us fix N ∩N ′ = (V,R). Similarly
to ConsPart(D, k), we associate a propositional variable
xb
ij with each base relation b ∈ B and each ordered pair

of variables (i, j) ∈ V × V such that i < j. Addition-
ally, we associate a distinct propositional variable rij with
each (i, j) ∈ V × V such that i < j; these variables are
used to measure the distance by capturing the elements in
diff(N ,N ′).

The hard part of our encoding is defined as the conjunc-
tion of the following formulas:∧

i,j∈V
i<j

∨
b∈B

xb
ij (5)

∧
b,b′∈B

(xb
ij ∧ xb′

jk →
∨

b′′∈b⋄b′
xb′′

ij ) (6)

for every i, j, k ∈ V with i < j < k∧
i,j∈V
i<j

(rij →
∨

b∈R(i,j)

xb
ij) (7)

The soft part of our encoding consists simply of the follow-
ing set of unit clauses S = {rij : i, j ∈ V and i < j}. In-
deed, by maximizing the number of true element in S, we
maximize the number of constraints that share the same base
relations with N ∩N ′.

Let us now introduce our second distance measure which
is based on the notion of variable relaxation.

Definition 6 (V-Relaxation). Let N = (V,R) be a QRN. A
V-relaxation of N is a QRN N ′ = (V ′, R′) s.t. V ′ ⊆ V and
R(i, j) = R′(i, j) for every i, j ∈ V . We use N ′

↓V ′ to denote
the V-relaxation N ′. A V-relaxation is said to be consistent
if it is a consistent QRN.

The set of consistent V-relaxations is denoted by
ConsVR(N ).

The distance measure obtained from the notion of V-
relaxation is defined as follows:

• Dvr(N ,N ′) = min{|V \ V ′| : N↓V ′ ∈ ConsVR(N ∩
N ′)}

This measure counts the minimum number of variables that
have to be removed to get consistency.

Let us describe our Partial MaxSAT encoding for com-
puting Dvr(N ,N ′). Let N ∩ N ′ = (V,R). To define our
encoding, we use variables of the form vi∈V in addition to
the variables of the form xb

ij . The variable vi is used to know
whether the variable i is ignored or not.

The hard part is defined as the conjunction of the follow-
ing formulas: ∧

i,j∈V
i<j

∨
b∈R(i,j)

xb
ij (8)

∧
b,b′∈B

(xb
ij ∧ xb′

jk ∧ vi ∧ vj ∧ vk →
∨

b′′∈R(i,j)∩(b⋄b′)

xb′′

ij )

(9)
for every i, j, k ∈ V with i < j < k

The soft part consists of the set of unit clauses
S = {vi : i ∈ V }, and by maximizing the true elements of
S, we minimise the number of ignored variables.

Adaptation of the k-means Algorithm
We adapt the k-means algorithm by considering the distance
measures introduced in the previous section as measures for
similarity between QRNs, and by defining the center of a
each cluster P as the QRN P⊙ =

⋂
N∈P N . The objective

is to minimize the inconsistency of the overall clustering.
To achieve this, we define the objective function to be min-
imized as max1≤l≤k incdist(P⊙

l ) where incdist measures
the inconsistency of P⊙

l using Dvr (resp. Drr) as the ratio
between the minimum number of edges (resp. edges) that
must be removed to make P⊙

l consistent.
The k-means requires an initialization phase of the k cen-

ters. In our context, Algorithm 1 performs this task with the
idea of considering the k − 1 most dispersed QRNs from a
QRN Ni called the QRN initialization seed. The QRN ini-
tialization seed is generated randomly and considered as the
first center P⊙

1 , and we proceed iteratively to consider the
QRN N ∈ D \ {P⊙

1 ,P⊙
2 , . . . ,P⊙

l−1} as the center of the
cluster Pl if N is the most distant QRN from ∩l−1

h=1P⊙
h with

respect to the chosen distance measure being Drr or Dvr.

Algorithm 1: Initialization Algorithm
Data: A set D = {N1, . . . ,Nn} of QRNs, number of

clusters k
Result: A set of centers {P⊙

1 ,P⊙
2 , . . . ,P⊙

k }
1 P⊙

1 ← randomchoice(D)
2 for l← 2 to k do
3 P⊙

l ← argmax
N∈D

dist(N ,∩l−1
h=1P

⊙
h )

4 end
5 return {P⊙

1 ,P⊙
2 , . . . ,P⊙

k }

Algorithm 2 initiates with k centers representing the ini-
tial clusters. The completion phase sequentially assigns each
QRN N not among the initial centers to its nearest cluster,
determined by the distance measure (Drr or Dvr) between
the cluster center and N . After all QRNs in D are assigned,
cluster centers are updated, and the objective function is re-
calculated. The algorithm then enters a rectification phase,
computing distances between each QRN and cluster centers
to identify potential moves. Moves are validated with a spe-
cific rule: if all QRNs in a cluster are set to change cluster,



only the most distant QRN can move, preventing clusters
from becoming black holes which is arising from QRN re-
assignments not considering concurrent moves and centers
updates occurring after all moves.

The process iterates until the objective function reaches 0
or no further moves can be made, indicating convergence.

Algorithm 2: Clustering Algorithm
Data: A set D = {N1, . . . ,Nn} of QRNs, number of

clusters k
Result: A set of clusters {P1,P2, . . . ,Pk}

1 {P⊙
1 ,P⊙

2 , . . . ,P⊙
k } = Initialization(D, k)

2 forN ∈ D \ {P⊙
1 ,P⊙

2 , . . . ,P⊙
k } do

3 j ← arg min
1≤l≤k

dist(N ,P⊙
l )

4 Pj ← Pj ∪ {N}
5 end
6 updateCenters(P1,P2, . . . ,Pk)

7 while max
1≤l≤k

incdist(P⊙
l ) > 0 do

8 moves = ∅
9 for (N ∈ D) do

10 j ← arg min
1≤l≤k

dist(N ,P⊙
l )

11 moves ∪ {(N , j)}
12 end
13 if moves = ∅ then
14 break
15 end
16 for move = (N , j) ∈ areV alid(moves) do
17 MoveN to cluster Pj

18 end
19 updateCenters(P1,P2, . . . ,Pk)
20 end
21 return {P1,P2, . . . ,Pk}

Experiments
We conducted experiments with 336 instances, each consist-
ing of 10 QRNs from either RCC-5 or RCC-8. The choice
of the two formalisms is just to illustrate our framework.
Two sets of instances were considered: one with only con-
sistent QRNs (COH-instances) and (INC-instances) were in-
consistent QRNs are present. These QRNs were generated
using the A(m, d, l) model from (Nebel and Renz 2011).
The model produces QRNs with m nodes, each with an aver-
age degree of d and an average relation size of l on selected
edges. We vary m from 7 to 10, while d ranges between
|m|
2 − 1 and |m|

2 in increments of 0.1, and l remains fixed at
|B|/2 for each formalism. We explore different values of k
ranging from 2 to 6. Experiments were performed on a com-
puter with an Intel i9-Core 2.80 GHz processor, 64 GB of
RAM, and coded in Python 3.9.16.

To evaluate the results obtained using the HAC and the
k-means algorithms, we utilized two metrics to assess the
intra-cluster resemblance of the QRNs within the same clus-
ter, and, two metrics to evaluate the inter-cluster dissimilar-
ity. The first metric mi1, indicates the average number of
shared base relations among edges in QRNs within a clus-
ter. A higher mi1 value implies a greater symbolic similarity

Algorithm 3: HAC Algorithm
Data: A set D = {N1, . . . ,Nn} of n consistent QRNs
Result: A set {C1, C2, . . . , Cn} where Ck is a k-clustering

of D
1 Cn = {P1,P2, . . . ,Pn} where Pj = {Nj}
2 k ← n
3 while k > 1 do
4 Pi,Pj = arg min

Ph,Pl∈Ck
h ̸=l

dist(P⊙
h ,P⊙

l )

5 Ck−1 ← (Ck \ {Pi,Pj}) ∪ {Pi ∪ Pj}
6 k ← k − 1
7 end
8 return {C1, C2, . . . , Cn}

among QRNs in the cluster.

mi1(P) =
2

m(m− 1)

∑
i,j∈V
i<j

|RP(i, j)|
|⋃N∈P R(i, j)|

Thus, we evaluate a k-clustering C through
intra1(C) = min

P∈C
mi1(P). In Figure 4, both the k-
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Figure 4: Obtained values of intra1.

means and HAC algorithms, utilizing distances Dvr and
Drr, yield k-clustering where the QRNs of the least
similar cluster exhibit a symbolic similarity of at least
30% on average, as indicated by mean values as black
triangles. Notably, the k-means algorithm, especially with
the Drr distance, generally outperforms. The second
metric, denoted as mi2, calculates the average number
of consistent triplets shared among the triplets of the
QRNs of each cluster. We use TN (i, j, k) to refer to the
set of consistent triplets of base relations of N defined
as {(b, b′, b′′) ∈ R(i, j)×R(j, k)×R(i, k) : b′′ ∈ b ⋄ b′}.
Thus,

mi2(P) =
1(
m
3

) ∑
i,j,k∈V
i<j<k

|TP(i, j, k)|
|⋃N∈P TN (i, j, k)|

This metric helps gauge the level of consistency in the
triplets of the QRNs within each cluster. We evaluate a k-
clustering C through intra2(C) = min

P∈C
mi2(P).



INCRCC−5 COHRCC−5 INCRCC−8 COHRCC−8

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
in
tr
a

2
kmeans(Dvr)

HAC(Dvr)

kmeans(Drr)

HAC(Drr)

Figure 5: Obtained values of intra2.

In Figure 5, both methods, using distances Dvr and Drr,
yield similar results. The least similar clusters show a mini-
mum of 30% consistent triplets on average.
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Figure 6: Obtained values of inter1.

The third and fourth metrics, me1 and me2, calculate the
average number of shared base relations among edges and
consistent triplets of base relations among triplets of two
cluster centers:

me1(Pφ,Pϑ) =
2

m(m− 1)|B|
∑
i,j∈V
i<j

RPφ∩Pϑ
(i, j)

me2(Pφ,Pϑ) =
1(

m
3

)
|T |

∑
i,j∈V
i<j

TPφ∩Pϑ
(i, j, k)

where T = {(b, b′, b′′) ∈ B3 : b′′ ∈ b⋄ b′}. A lower value of
me1 respectively me3 signifies a greater symbolic dissimi-
larity between the two clusters respectively a lower number
of shared consistent triplets, indicating a reduced likelihood
that the two clusters exhibit a form of consistency merged
together. These two metrics, me1 and me3, offer valuable
insights for assessing the divergence of clusters within a
k-clustering. Thus, other evaluations of a k-clustering C
are defined as inter1(C) = min

(Pφ,Pϑ)∈C×C
φ̸=ϑ

me1(Pφ,Pϑ) and

inter2(C) = min
(Pφ,Pϑ)∈C×C

φ̸=ϑ

me2(Pφ,Pϑ).
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Figure 7: Obtained values of inter2.

Figures 6 and 7 reveal that, the two most similar clusters
in each k-clustering exhibit a maximum symbolic similarity
and consistent triplets shared copped to 30% on average.

In addition to the mentioned metrics, we con-
sider the minimum of consistency of C, defined as
mcoh(C) = 1− (max

P∈C
incDvr

(P⊙)×max
P∈C

incDrr
(P⊙))

1
2 .

This additional metric provide a more comprehensive
evaluation of the consistency of the results.
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Figure 8: Values of mcoh on instances where consistent par-
titions are feasible.

In Figure 8, all methods identified consistent k-clusterings
for at least 100 out of 168 instances with possible consistent
partitions. Additionally, when k-clusterings are inconsistent,
the average minimum consistency value is mcoh = 0.88 for
the least consistent cluster.

Conclusion
We have presented a formal framework for QSTR cluster-
ing, introducing a SAT encoding to verify the feasibility of
consistent partitions. We also proposed QRN-specific dis-
tance measures to calculate similarity, and conducted ex-
periments using adapted k-means and HAC algorithms us-
ing these measures. In future work, we aim to explore other
objective functions such as maximizing the number of con-
sistent clusters, develop additional measures to assess QRN
similarity and evaluate the quality of a k-clustering, and en-
hance our k-means adaptation algorithm by leveraging intu-
itive rules for QRN relocation.
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