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Abstract
A Generative Adversarial Network (GAN) is an artifi-
cial intelligence model developed specifically to pro-
duce synthetic data that resembles real data by training
a generative model and a discriminative model simulta-
neously using adversarial training. A GAN can be ex-
tensively used for generating replicated data, however,
it suffers from several issues, one of which is mode col-
lapse. Mode collapse takes place when the generator is
unable to capture the complete range of diversity in the
target data distribution, resulting in the production of
limited and repeating variations of samples. Multiple
metrics exist to quantify mode collapse in GANs, al-
though no individual metric is capable of consistently
providing accurate results. This research focuses on the
critical need for accurate mode collapse detection tech-
niques in GANs, to strengthen the credit card fraud
detection systems. In this work, we utilize a GAN to
generate numerical data instead of image data. Our ap-
proach utilizes a wide range of measures, such as Gener-
ator and Discriminator Loss, Wasserstein Distance, pre-
cision, recall, and visualization tools, to provide a com-
prehensive framework for detecting mode collapse. In
addition, we introduce an alert mechanism that identi-
fies possible mode collapse at an early stage, allowing
for earlier intervention and modifications to the training
process. We have further proposed suggestions regard-
ing monitoring and analyzing generator and discrimina-
tor loss values to identify potential instances of mode
collapse to help the developer optimize GAN training
and improve the quality of synthetic data.

1 Introduction
A generative adversarial network (GAN) is a machine learn-
ing (ML) model in which two neural networks, the gener-
ator and the discriminator, compete using deep learning ap-
proaches to improve the accuracy of their predictions (Good-
fellow et al. 2014). The main purpose of the generator is
to produce artificial data that closely resembles actual data
samples. It acquires the ability to create a mapping between
random noise or a hidden input and data points that are ide-
ally indistinguishable from the actual dataset. The discrimi-
nator functions as a binary classifier, differentiating between
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real and synthetic data samples. It assesses the integrity of a
provided input and assigns a probability indicating its like-
lihood of belonging to the real dataset. The training objec-
tive is to identify a Nash equilibrium in which the generator
generates data that is indistinguishable from genuine data,
and the discriminator is unable to consistently distinguish
between real and generated samples.

The objective function is formulated as a minimax prob-
lem as follows (Dwivedi 2023):
min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

Here, D(x) is the discriminator’s assessment of the like-
lihood that the input x originates from the actual data dis-
tribution. The output of the generator, denoted as G(z), is
obtained by feeding a random noise input z. pdata(x) repre-
sents the actual data distribution and pz(z) is the noise input
distribution. The first part of this objective function encour-
ages the discriminator to accurately categorize real data and
the second part encourages the generator to generate sam-
ples that the discriminator classifies as real.

Since being developed in 2014 by Goodfellow et al.,
GANs have had significant success in producing duplicated
data, but they also come across several challenges. The three
primary constraints of GANs include the Vanishing gradi-
ent problem, Non-convergence, and Mode collapse (Saxena
and Cao 2021). Mode collapse is a phenomenon that occurs
in GANs when the generated outputs are limited to a small
set of examples, therefore failing to represent the full range
of diversity present in the training data distribution (Kos-
sale, Airaj, and Darouichi 2022). Several innovative GAN
techniques have been proposed to address the issue of mode
collapse by showcasing the stability and resilience of their
approach on specific architectures and datasets but there is
a lack of research that systematically compares their perfor-
mance. Mode collapse detection is important, and currently,
no one particular metric can measure this effectively. How-
ever, by integrating many metrics, it is possible to identify
occurrences of mode collapse.

The aim of this work is to reliably detect mode collapse by
considering a range of diverse metrics. By detecting mode
collapse at an early stage, it is possible to take appropri-
ate steps during the training process of a GAN to enhance
the quality of the generated data and eventually enhance its



performance. The significance of this study lies in the ap-
plication of a GAN to numerical data, which is distinct from
the existing focus on image data, as conventional metrics de-
signed for image data are not directly applicable due to the
different characteristics of numerical data.

This work makes the following contributions:

1. Diverse measures: Our methodology integrates a range
of criteria, such as Generator and Discriminator Loss,
Wasserstein Distance, t-SNE visualization and precision,
and recall to comprehensively assess the performance of
GANs and identify mode collapse accurately.

2. An alert system for earlier detection: We propose an
alert system that detects the occurrence of possible mode
collapse at an early stage so that training adjustments can
be made to stabilize the GAN.

3. Monitoring and analysis: We provide a methodology for
examining the dynamics of generator and discriminator
loss to actively monitor for indications of mode collapse.

We organize the rest of the paper as follows: In Section 2 we
present a background of previous work. Then, we discuss
mode collapse in detail in Section 3. Section 4 introduces
experimental datasets. In Section 5, we discuss the exper-
imental analysis, and in Section 6, we present our results.
Finally, we conclude the paper with a final summary and dis-
cussion of future work in Section 7 and Acknowledgments
in Section 8.

2 Background
Several mode collapse detection techniques have been de-
veloped in recent years. In this section, we will provide a
thorough evaluation of these approaches.

Zhenyu et al. (Wu et al. 2021) investigates intra-mode col-
lapse in state-of-the-art GANs within a novel black-box set-
ting, without access to training data and trained model pa-
rameters. The researchers used faces and vehicles as subjects
to measure and analyze the overall collapse inside a specific
mode. They used statistical tools to quantify this collapse,
examined potential causes, and proposed two novel black-
box calibration methods to mitigate the mode collapse. Al-
though the initial findings have been promising, the study
has several limitations, such as discrepancies in predicting
the description of the identity in generated images.

Acklyn et al. (Murray and Rawat 2021) examine the oc-
currence of mode collapse in the Intrusion Detection System
(IDS) Control Flow GAN (ICF-GAN) model and suggests
conditional strategies to mitigate instances of mode collapse.
The paper presents a mini-batch approach that greatly im-
proves the accuracy of the model. The ICF-GAN, which uti-
lizes LSTM with mini-batch discrimination ingestion, ex-
hibits enhanced precision in hazard control flow and bot-
net anomaly detection. The ICF-GAN outperforms current
methods, as demonstrated by a comparative analysis and nu-
merical findings.

Sayeri et al. (Lala et al. 2018) examine the latest GAN
architectures, specifically AdaGAN, VEEGAN, Wasser-
stein GAN, and Unrolled GAN on both synthetic and real
datasets. The comparison is based on several widely used

metrics for measuring mode collapse. Their results indicate
that AdaGAN consistently outperforms other GANs on al-
most all datasets, but Wasserstein GAN exhibits poor per-
formance on these datasets. They also acknowledged that a
single metric is inadequate for measuring mode collapse in
GANs due to the lack of consistent results from these met-
rics.

Saad et al. (Saad, Rehmani, and O’Reilly 2022) compared
mode collapse measures across datasets and found that Ada-
GAN outperforms other GANs whereas Wasserstein GAN
performs poorly. Additionally, conflicting results imply that
a single parameter for evaluating mode collapse in GANs
is insufficient. AIIN (Adaptive Instance Normalization Ini-
tialization) is recommended for DCGAN to address this is-
sue. DCGAN with AIIN generates more varied X-ray im-
ages than DCGAN without AIIN. The improved MS-SSIM
and FID scores address mode collapse. In some image prop-
erties, AIIN preprocessing beats Gaussian and median fil-
tering. Augmented images, which combine generated X-ray
images with real photos, are used to train machine learning
classifiers, validating the suggested approach.

Ding et al. (Ding, Jiang, and Zhao 2022) provide a com-
prehensive literature review on mode collapse. They analyze
the resolution for this issue from an architectural and loss
functions perspective. From an architectural point of view,
the authors discuss multiple types of GANs, including mul-
tiple generator GANs, self-attention GANs, and big GANs.
From a loss functions perspective, they explore Unrolled
GAN and DRAGAN. They examine the future prospects of
the GAN by providing a concise overview of the diverse ap-
plications of GANs.

Toi et al. (Tsuneda et al. 2021) introduce IRGANs as a so-
lution to mitigate mode collapse, incorporating the concept
of intrinsic rewards in reinforcement learning. The utiliza-
tion of the RND approach in training the generator with sim-
plified algorithms is aimed at stabilizing the learning pro-
cess and is rooted in intrinsic incentives. In the compari-
son studies, they employed DCGAN as the default GANs
and applied IRGAN with the intrinsic rewards of the pro-
posed technique. Subsequently, they assess the performance
of multiple datasets (MNIST and Fashion-MNIST) and find
that their proposed approach consistently demonstrates su-
perior performance in every experiment.

Durall et al. (Durall et al. 2020) identify a direct correla-
tion between the eigenvalues of the Generator and the inci-
dence of mode collapse through the presence of large eigen-
values, which may indicate the approach to a distinct min-
imum, is closely associated with the occurrence of mode
collapse. Inspired by this result, the researchers propose
a new optimization technique termed nudged-Adam (Nu-
GAN) that utilizes second-order gradient information to de-
viate from sharp optima, thus avoiding mode collapse. Their
findings indicate that examining the generalization aspects
of GANs, such as analyzing the uniformity of the optimal
solutions discovered during training, is a potential strategy
for advancing toward more stable GAN training.

Adiban et al. (Adiban, Siniscalchi, and Salvi 2023) intro-
duces STEP-GAN to identify and mitigate cyber risks. A
multi-generator GAN-based model was employed to simu-



late potential attacks on the system. The model underwent
step-by-step training involving the interaction between gen-
erators and a discriminator. They outperform state-of-the-art
approaches on two severely unbalanced datasets, ICS and
UNSW-NB15. The authors test their model on OCAN and
MGOCAN, which have not been tested before, and get su-
perior results. They also test their method on seven anomaly
detection datasets to prove its universality. In general, STEP-
GAN outperforms other semi-supervised methods and some
supervised methods.

Jizheng et al. (Jia and Zhao 2019) develop a siamese net-
work that can transform high-dimensional image data into a
fixed real number embedding that accurately represents se-
mantic information. Mode collapse is identified by emulat-
ing the Wasserstein distance with Euclidean distance. Ac-
cording to empirical evidence, they found that the Siamese
Score is 59 times more efficient than the Inception Score
which makes it an effective GAN evaluation method.

Adiga et al. (Adiga et al. 2018) introduce two princi-
pled measures, namely mode collapse divergence (MCD)
and generative quality score (GQS), to accurately measure
mode collapse and sample quality. The evaluation measures
were used to compare numerous GAN architectures, includ-
ing vanilla GAN, WGAN, LSGAN, PacGAN, and CGAN,
across three datasets, namely MNIST, Fashion MNIST and
CIFAR-10.

In contrast to these works, we propose a mode collapse
detection strategy that includes diverse metrics, early de-
tection warnings, and monitoring methodologies instead of
individual metrics or architectural changes. The alert sys-
tem allows rapid intervention and training changes to min-
imize extreme divergence and stabilize GAN performance.
We also propose specific generator and discriminator loss
dynamics monitoring recommendations to help developers
actively track mode collapse warning indications and take
preventative measures.

3 Mode Collapse
The primary objective of a GAN is to develop the ability
to generate new data that closely resembles the pre-existing
real data it was trained on. When replicating data, it is cru-
cial to capture the diversity of the data to avoid the model
producing redundant and identical data. Mode collapse is an
issue faced by GANs in which the generator produces a lim-
ited set of similar or identical samples, instead of generating
a diverse and realistic range of outputs (Kossale, Airaj, and
Darouichi 2022). There are two possible indications of mode
collapse: (1) The output data is missing a substantial frac-
tion of the modes found in the input data. (2) The Generator
exclusively acquires knowledge of a limited set of distinct
patterns.

Multiple circumstances might lead to the phenomenon of
mode collapse. For example: (1) When the discriminator be-
comes stronger than the generator because of imbalanced
learning rates between the generator and the discriminator,
the generator faces difficulties in properly using the gradi-
ents for learning. As a result, this leads to a limited variety of
produced samples (Saad, Rehmani, and O’Reilly 2022). (2)
In cases where the input data has a limited range of fluctu-

ations, the generator may have challenges producing a wide
range of outputs. (3) When the generator’s convergence dur-
ing training results in a local minimum instead of a global
minimum, this may lead to the generation of a limited set of
results, thereby inaccurately representing the complete range
of data distribution.

Figure 1: Example of Mode collapse (Metz et al. 2016)

The MNIST dataset contains 10 discrete categories cor-
responding to the numerical digits ranging from zero to
nine. Figure 1 shows the samples generated by two separate
GANs. The first row generates all ten modes, but the second
row exclusively generates a single mode, precisely the digit
”6”. Mode collapse is a phenomenon that arises when the
creation of data is restricted to a small number of modes.

4 Dataset
In this study, we use both synthetic (VU 2024) and real-
world (ULB 2024) datasets from the Kaggle website. The
real-world dataset (ULB 2024) consists of credit card trans-
actions of two days performed by European cardholders
in September 2013. It includes a total of 284,807 trans-
actions, among which only 0.17% are fraudulent transac-
tion data - which leads to the class imbalance issue. In this
dataset, all confidential information is PCA-transformed and
the only features that have not been transformed with PCA
are ’Time’ and ’Amount’. The synthetic dataset (VU 2024)
presents Card Not Present Transaction Fraud which consists
of 151,112 transactions that accurately replicate fraud pat-
terns observed in the real world. The fraud prevalence rate
is 9.36%. The features include sign-up time, purchase time,
purchase value, device ID, user ID, browser, and IP address.

5 Experimental Setup
Our work introduces a new strategy where we utilize a com-
bination of multiple metrics to detect mode collapse. For
both synthetic and real-world datasets, we employ the same
architecture and training technique of the GAN model, mak-
ing slight adjustments as required for each dataset. This sec-
tion will provide a comprehensive overview of our experi-
mental setup, encompassing data preparation, the GAN ar-
chitecture, and the training method.

5.1 Data Preprocessing
For both datasets, we primarily focused on transaction time,
amount, and class features as shown in Table 1 as these are



the only available features on the real-world dataset. The
percentage of fraudulent data in both datasets is significantly
lower than that of authentic data, resulting in an imbalanced
dataset. To address the problem of class imbalance, we used
a downsampling technique. Next, we split the dataset into
training and test sets for applying GAN.

Table 1: Feature Categories

Feature
Name

Feature
Type

Description

Transaction
Time

Numerical Purchase time (synthetic
dataset), number of seconds
since first transaction (real
dataset)

Transaction
amount

Numerical Transaction amount

Class Numerical Indicates whether a transac-
tion is fraudulent or real

5.2 GAN Architecture
The GAN architecture includes a generator and a discrimi-
nator, which engage in a competitive training process. The
purpose of the generator is to produce synthetic data sam-
ples that closely resemble the real data distribution, whereas
the discriminator’s objective is to distinguish between real
and generated samples. The generator consists of three dense
layers that utilize Rectified Linear Unit (ReLU) activation
functions, batch normalization layers, and a sigmoid activa-
tion function in the output layer. The discriminator, however,
consists of two dense layers utilizing ReLU activation func-
tions, dropout layers to mitigate overfitting, and a sigmoid
activation function in the output layer. The generator uses a
latent dimension of 100 as its input, enabling it to acquire
a significant and meaningful representation of the data. The
GAN model is compiled using the Adam optimizer and bi-
nary crossentropy loss function. The Adam optimizer effec-
tively updates model parameters and learning rates for opti-
mal convergence and the binary crossentropy loss function
quantifies the difference between predicted probability and
true labels. The GAN trains both the generator and discrim-
inator networks simultaneously to enhance the generator’s
capacity to generate authentic synthetic data that can subse-
quently increase the effectiveness of fraud detection models.

5.3 Training Process
The GAN undergoes training for a certain number of epochs,
each consisting of a sequence of steps. During each itera-
tion, the generator produces synthetic data by utilizing ran-
dom noise, intending to replicate the distribution of authen-
tic data. Simultaneously, the discriminator is trained to dif-
ferentiate between genuine and generated samples. The gen-
erator and discriminator are compiled using the Adam opti-
mizer and binary crossentropy loss function, which is opti-
mal for the binary classification task performed by the GAN.
During the training process, the losses of both the genera-
tor and discriminator are measured, and their convergence

is observed. In addition, the training method includes an ap-
proach to identify mode collapse, which occurs when the
generator generates a restricted range of samples. Careful
monitoring ensures the generation of a broad and diverse set
of synthetic data, which is essential for training fraud detec-
tion models and other related activities.

5.4 Alert System
We have implemented a mode collapse detection strategy
that is inserted into the training loop. After a specific num-
ber of epochs, if there is an increase in the generator loss
(suggesting a decline in its performance), and at the same
time, the discriminator loss decreases (indicating that the
discriminator is becoming excessively skilled at discrim-
inating samples), it is assumed that a mode collapse has
occurred. To resolve this problem, the training process is
stopped, and a warning is displayed indicating the possible
presence of mode collapse. This cautious interference pre-
vents the GAN from reaching a suboptimal state where the
generated data lacks the required variety to accurately rep-
resent the data distribution of the original dataset.

5.5 Mode Collapse Evaluation Metrics
For mode collapse detection, we propose a combination
of four metrics: Wasserstein distance, t-SNE visualization,
Generator and Discriminator loss, and precision and recall.

1. The Wasserstein distance is a metric that measures the
dissimilarity or distance between two probability distri-
butions. The function accepts two sets of synthetic data
as input, converts them into one-dimensional arrays, and
subsequently computes the Wasserstein distance. If mode
collapse is present, the Wasserstein distance between dis-
tinct batches of synthetic data is expected to be minimal,
indicating a lack of diversity in the generated samples.

2. The distribution of combined real and synthetic data is
explored in a two-dimensional space using a t-SNE visu-
alization. The real and synthetic data are combined into a
unified data frame, and t-SNE is employed to reduce the
dimensionality for the purpose of visualization. This rep-
resentation facilitates the evaluation of the diversity and
distribution of synthetic data produced by the GAN.

3. Monitoring the losses of the Generator and Discriminator
is essential for detecting mode collapse during the training
of GANs. The Generator loss measures the efficacy of the
generator in producing synthetic data, whereas the Dis-
criminator loss indicates the discriminator’s proficiency in
differentiating between real and synthetic samples. Mode
collapse, a phenomenon in which the generator narrows
its output to a restricted range of samples, can be identi-
fied by a simultaneous increase in the generator loss and
a drop in the discriminator loss. This indicates that the
generator faces difficulty producing diverse data, while
the discriminator gets excessively skilled in differentiat-
ing the small range of generated samples.

4. Precision and recall play a vital role in detecting mode
collapse. Precision evaluates the correctness of positive
predictions, reflecting the discriminator’s reliability in ac-
curately detecting authentic incidents. On the other hand,



recall measures the model’s capacity to correctly identify
all positive cases, indicating the extent to which the gen-
erator’s output is comprehensive. A high precision score
means the discriminator can differentiate between real
and fake data. A high recall score means the generator
generates convincing fake data.

6 Result

We analyzed multiple scenarios on both datasets to illustrate
the importance of each metric in detecting mode collapse.

• Scenario 1: Entire real and synthetic dataset

• Scenario 2: Real and synthetic dataset’s subset

6.1 Generator and Discriminator loss

In Scenario 1, we applied GANs on both the real and syn-
thetic datasets and graphed the loss of the generator and
discriminator. Our goal is that both the generator and dis-
criminator losses reach a point of stabilization. The decline
in generator loss with time signifies the improvement of
the generator in generating authentic and convincing data
that misleads the discriminator. As the generator enhances,
the discriminator’s responsibility becomes more challeng-
ing, resulting in its loss stabilizing by increasing. Rapid fluc-
tuations or exceptionally high values of any losses may sug-
gest issues such as mode collapse. Figure 2 and Figure 3
show continuous and significant fluctuations in the discrimi-
nator loss, whereas the generator loss exhibits minimal fluc-
tuation. However, neither of them reaches a stable state, in-
dicating the occurrence of mode collapse. In Figure 2, we
can see the fluctuations of discriminator loss, beginning at
935.14 in epoch 0, declining to 874.64 in epoch 30, further
decreasing to 489.58 in epoch 60, and then increasing to
791.35 in epoch 100. Conversely, the loss of the generator
began at 0.71 in epoch 0 and increased to 0.72 in epoch 20,
then reduced to 0.69 in epoch 60 and further to 0.68 in epoch
100. These fluctuations indicate the possible occurrence of
mode collapse. In Figure 3, we can observe a similar pattern
for both the generator and discriminator loss, indicating the
existence of mode collapse.

In Scenario 2, we applied GANs on subsets of both the
real and synthetic datasets and observed the loss values. The
results are a bit different here than the previous one because
of the small amount of data. Figure 4 displays the fluctuation
in discriminator loss. It started at a value of 3403.61 during
epoch 0, subsequently increased to 4757.286 by epoch 40,
and further increased to 5024.69 by epoch 90. Although it
did not reach a stable peak, the positive aspect is the indica-
tion of a consistent upward trend, which is what we desire.
The generator loss exhibits a consistent decline, decreasing
from 0.72 in epoch 0 to 0.71 in epoch 40, and further to
0.70 by epoch 90. This constant decrease is a positive signal
of improvement in generating high-quality data. In Figure
5, we can see a significant decrease in generator loss and a
rise in discriminator loss, indicating a positive trend with no
evidence of potential mode collapse.

6.2 t-SNE visualization
In Scenario 1, we worked with t-SNE visualization on both
real and synthetic datasets. In both Figure 6 and Figure 7, the
blue portion represents generated data, and the pink portion
represents real data. The generated data displayed in Figure
6 and Figure 7 exhibit a limited range, lacking the diver-
sity observed in real data. These visualizations demonstrate
that the generated data fails to portray the true diversity of
the real data, resulting in the occurrence of mode collapse,
where similar types of data are repeatedly generated.

In Scenario 2, we utilized t-SNE visualization on a subset
of both real and synthetic datasets. In Figure 8 and Figure 9,
the generated data is distributed throughout the whole range
combined with real data, indicating that it effectively cap-
tures the diverse characteristics of real data.

6.3 Wasserstein distance
The Wasserstein distance was also used to detect mode col-
lapse. In Scenario 1, the Wasserstein distance between two
synthetic data points in the real dataset is 0.00064. The pres-
ence of smaller Wasserstein distances indicates a potential
shortage in the variety of the generated samples, which gives
rise to concerns regarding mode collapse. And the Wasser-
stein distance between two synthetic data points in the syn-
thetic dataset is 0.00104, indicating a similar situation.

In Scenario 2, the Wasserstein distance between two syn-
thetic data points generated from a subset of the real dataset
is 0.00917 - a higher Wasserstein distance indicates an im-
proved variety in the generated samples. The Wasserstein
distance between two synthetic data points inside a subset
of the synthetic dataset is 0.01393, indicating a similar sit-
uation. So, we hypothesize that for Scenario 1, diversity is
weaker, whereas the larger distances in Scenario 2 indicate
improvements in capturing a wider variety of data patterns.

6.4 Precision-Recall
The evaluation of precision-recall is crucial for detecting
mode collapse. In Scenario 1, we achieved a precision of
0.69 and a recall of around 0.67. In Scenario 2, we ob-
tained a precision of 0.62 and a recall of 0.71. Therefore,
while dealing with a small quantity of data, the recall rate is
higher, while the precision rate is lower. A drop in precision
indicates that the discriminator is encountering difficulties
in distinguishing between generated and real data, perhaps
due to the improved quality of generated data. On the other
hand, a rise in recall signifies that the generator’s capability
to imitate real data has improved, which is a positive indi-
cation. Thus, the likelihood of mode collapse occurring is
lower in scenario 2 compared to scenario 1.

It should be noted that we did not compare our work to ex-
isting approaches because most approaches use image data,
while we use numerical data and different data formats re-
quire different evaluation metrics.

6.5 Alert system
In the next phase of our work, we developed an alert sys-
tem with the purpose of promptly detecting mode collapse.
At periods of 10 epochs, the function evaluates the progress



Figure 2: (1) Figure 3: (2) Figure 4: (3) Figure 5: (4)

Figure 6: (5) Figure 7: (6) Figure 8: (7) Figure 9: (8)

(1) GAN training loss on real dataset (2) GAN training loss on synthetic dataset (3) GAN training loss on real dataset’s subset
(4) GAN training loss on synthetic dataset’s subset (5) t-SNE visualization of real data (6) t-SNE visualization of synthetic
dataset (7) t-SNE visualization of real dataset’s subset (8) t-SNE visualization of synthetic dataset’s subset

of the training by comparing the losses of the generator and
discriminator to determine if it is deviating from the desired
path. If the generator’s ability to mislead the discrimina-
tor declines while the discriminator becomes exceedingly
proficient, an alarm is triggered, and the training process
is stopped to prevent further loss of time and resources,
thereby preventing the GAN from becoming stuck in a cycle
of repetitive patterns.

Algorithm 1 Alert System for possible mode collapse

1: Initialize min g loss and min d loss to large values
2: for each epoch do
3: Train the GAN model
4: Calculate generator loss (g loss) and discriminator

loss (d loss)
5: if epoch > 10 and epoch mod 10 == 0 then
6: if g loss > min g loss and d loss < min d loss

then
7: Print(”Mode collapse detected”)
8: Break
9: else

10: min g loss← g loss
11: min d loss← d loss
12: end if
13: end if
14: end for=0

7 Conclusion and Future Work
In this work, we propose a comprehensive methodology for
evaluating and addressing mode collapse in GANs. A com-

bination of multiple metrics, such as Generator and Discrim-
inator Loss, Wasserstein Distance, t-SNE visualization, and
precision-recall metrics, provides a comprehensive evalua-
tion of GAN’s performance. The proposed alert system func-
tions as an early warning for possible mode collapse, allow-
ing for immediate actions to stabilize the GAN.

Based on an examination of the generator and discrimina-
tor loss across the epochs, we can conclude that there is no
fixed threshold for the generator and discriminator loss. This
is because the threshold depends on specific characteristics
of the GAN architecture and dataset being used. A substan-
tial rise in generator loss and also any extremely low or ex-
tremely high discriminator loss could suggest the occurrence
of mode collapse. We recommend monitoring the fluctua-
tions in both generator and discriminator losses to identify
mode collapse as early as possible. Our future plans involve
expanding our evaluation metrics and improving the alarm
system through the incorporation of adaptive thresholding
approaches and an automated intervention mechanism. In
this work, we solely focused on improving credit card fraud
detection with GANs. In the future, we plan to apply the
proposed approach to other domains and problems. We also
plan to apply explainability and interpretability to identify
instances of mode collapse.
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