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Abstract 
Electroencephalogram (EEG) recordings of children are of-
ten used to study the underlying neural basis of causal fac-
tors of reading disorders and dyslexia. However, the inter-
subject variability in EEG and the unconstrained nature of 
reading experiments used to elicit these factors made it chal-
lenging for traditional EEG analysis methods to extract neu-
ral components of these factors. In this work, we aim to ex-
plore the use of novel deep neural network architectures and 
contrastive learning methods to overcome the methodologi-
cal limitations of traditional techniques and enhance the ex-
traction process of neural components during reading tasks. 
Notably, we formulate a neural network architecture to ex-
tract EEG embedding using contrastive loss that maximizes 
the neural congruency in non-dyslexic children compared to 
children with dyslexia. We plan to evaluate our approach on 
three EEG datasets involving children with dyslexia per-
forming Rapid Automatized Naming (RAN) and Phonologi-
cal Processing (PA) tasks. The proposed contrastive learn-
ing framework will provide an enhanced tool to facilitate 
studying the neural underpinnings of naming speed and their 
association with reading performance and related difficul-
ties. 

 Introduction   
Dyslexia is the most prevalent reading disorder, affecting 
between 15-20% of children, and often persists through 
adulthood (Moats et al., 2008). Due to its high prevalence 
and societal impact, the determinants of dyslexia have been 
studied from different facets, ranging from cognitive (such 
as phonological awareness), genetic, and environmental 
(Theodoridou et al., 2021) to neural factors (Christoforou 
et al., 2021). However, despite these intensive research 
efforts, there is still a substantial debate regarding the un-
derlying causes of dyslexia (Parrila et al., 2020), particular-
ly the neural underpinnings of such factors.  
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 Electroencephalogram (EEG) recordings have been a 
gateway to studying the underlying neural basis of causal 
factors of reading disorders and other cognitive processes. 
On the other hand, traditional EEG analysis methods aver-
age EEG signals across trials to improve the signal-to-
noise ratio of the stereotypical waveforms evoked in re-
sponse to brief stimuli (Breznitz, 2005) or explore the 
power of the signals at different frequency bands (i.e., fre-
quency analysis). On the other hand, machine-learning-
based approaches learn spatial projections across sensors 
that optimize a desired signal property, such as maximum 
variance, statistical independence, power-ratio differences 
and amplitude differences, among others (Parra et al., 
2005; Dyrholm et al., 2007, Christoforou et al. 2008). 
However, components extracted using these approaches do 
not necessarily capture neural activity relevant to cognitive 
factors associated with reading and do not generalize 
across subjects due to the inter-subject variability of EEG 
signals (Christoforou et al., 2010) 
 Recently, the neural-congruency EEG analysis frame-
work has been proposed to extract reading-specific neural 
components from EEG (Christoforou et al., 2021a, 2021b, 
2022a, 2022b). The framework uses machine learning to 
extract linear neural components that maximize the simi-
larity of EEG responses across control group participants 
(i.e., typical readers) during reading tasks. The extracted 
components have been shown to capture differences be-
tween children with dyslexia and controls in several read-
ing tasks capturing phonological processing (Christoforou 
et al., 2023a), naming speed (Christoforou et al., 2023b) 
and phonological abilities (Christoforou et al., 2023c). 
However, the neural-congruency framework focuses pri-
marily on within-group similarities, ignoring across-group 
differences, and it is sensitive to cofactor impurities of the 
control group purity for cofactors to control group purity 
selection and variations across tasks. 
In the neural network literature, contrastive learning has 
recently gained popularity as a method to generate vector 



embeddings, such that congruent observation pairs (often 
from different modalities, i.e., image -text) are proximal 
and non-congruent observation pairs are more distal from 
each other in the embedding space (Chen et al. 2020). Con-
trastive learning achieved state-of-the-art performance in 
downstream tasks of various fields, such as computer vi-
sion and medical informatics (Li et al. 2021) and natural 
language processing tasks (Zhang et al. 2022). 
 Motivated by the success of the neural-congruency 
framework in extracting reading-specific neural compo-
nents and the potential of contrastive learning as a general 
framework for capturing non-linear mappings in both con-
gruent and incongruent observations, in this work, we aim 
to formulate a neural network architecture to extract read-
ing-specific EEG embedding using contrastive loss that 
maximizes the neural congruency in non-dyslexic children 
compared to children with dyslexia. We hypothesize that 
the contrastive learning that optimizes the neural congru-
ency criterion will extract more informative neural compo-
nents and minimize the presence of irrelevant, non-
reading-related co-factor components from the embedding 
process. In this preliminary stage of our work, we briefly 
introduce the proposed contrastive network architecture, its 
training process, and the evaluation approach. 

Methodology  
An illustration of the proposed Contrastive-learning-based 
Neural-congruency framework is shown in Figure 1. Be-
low, we briefly outline the overall model architecture, the 
contrastive learning procedure, the prediction process, and 
the evaluation strategy. 
EEG dataset and Reading Tasks: We plan to train the 
proposed models on EEG epochs from a group of 30 chil-
dren with dyslexia and 30 children in a control group, ob-
tained while children perform three reading tasks, namely 
Rapid Automatized Naming, Spoonerism, and Phoneme 
Elision. For each participant s and each reading task, a set 
of N epoch observations is obtained, each represented as a 
matrix 𝑋!" ∈ 	ℝ#×% , where n is the epoch index, D is the 
number of EEG sensors, and T is the number of time 
points.  

Generating contrastive EEG samples batches: To en-
force the contrastive learning strategy, we build batches of 
congruent and incongruent observations pairs across sub-
jects. Each batch comprises pairs 𝑿& = (𝑋!!

"! , 𝑋!"
"") of ran-

dom samples from the dataset of all epochs and partici-
pants. A pair is labeled congruent (𝛿& = 1), if the partici-
pant 𝑠'	𝑎𝑛𝑑	𝑠( belongs to the same group, or incongruent 
(𝛿& = −1) otherwise. 
EEG components Embedding Model: Motivated by the 
neural-congruency framework, we build a neural network 
architecture that extracts spatial projections in EEG. The 
model takes as input an EEG epoch 𝑋!" and generates a 
spatio-frequency-temporal representation tensor 𝐻!" ∈
ℝ)×*×%  of each epoch, through a spatial and temporal 1D 
convolutions, where C denotes the number of spatial kernel 
and F is the number of temporal kernels.  
Contrastive Loss: The parameters of the embedding mod-
el are trained by minimizing the contrastive loss function 
on the set of pairs 	𝑧& = (𝑍!!

"! , 𝑍!"
"") and their corresponding 

congruency designation  𝛿&,	where 𝑍!" ∈ 	ℝ+ = 𝑣𝑒𝑐(		𝐻!") 
denotes the vectorization form of  𝐻!", and 𝐿 = 𝐶𝐹𝑇. 
Multi-linear prediction model: With the embedding 
model parameters fixed through contrastive learning opti-
mization, we introduce a multilinear projection architecture 
to classify observations. Given the output tensor of an em-
bedding layer, the prediction model learns special, fre-
quency, and temporal filters defined as a sequence of con-
volutions that are optimized using cross-entropy loss. 

Future work  
We plan to evaluate and compare the predictive perfor-
mance of our proposed Contrastive-learning-based Neural-
congruency model to the Neural-congruency Framework 
proposed by Christoforou et al. Evaluation will be based on 
the accuracy performance and the spatial interpretability of 
the resulting components on real EEG datasets. We hy-
pothesize that our model’s ability to factor epochs into 
frequency elements and then extract neural components 
through contrastive learning will enable extracting more 
“pure” neural components associated with reading-related 
cognitive factors. 
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Figure 1. The illustration of the proposed Contrastive-learning-based neural congruency framework.  
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