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Abstract
Solar flares are intense bursts of radiation across the
electromagnetic spectrum on the surface of the Sun.
They are categorized into four classes: B, C, M, and X,
depending on their intensity, with X-class flares being
the strongest. Being able to predict a flare’s class be-
fore its occurrence is critical for anticipating the sever-
ity of its impact on Earth. We used the Space-weather
HMI Active Region Patches (SHARP) parameters avail-
able from Stanford’s Joint Science Operations Center
(JSOC) to train machine learning models to classify
these flares. However, predicting the flare class is a chal-
lenging task, as it is a multiclass classification prob-
lem involving imbalanced data due to the small num-
ber of X-class flares in a solar cycle. We propose a
new method that uses a combination of random under-
sampling and the synthetic minority oversampling tech-
nique (SMOTE) to combat the imbalanced data prob-
lem. Furthermore, we develop an ensemble algorithm
that uses nine classifiers as base learners and logistic
regression as meta-learner. Experimental results show
that the proposed method is effective in predicting solar
flares, especially the most intense X-class flares, within
the next 24 hours.

Introduction
A solar flare is a major eruptive event in the solar system.
This event converts the magnetic energy stored in the Sun’s
magnetic field into radiation that covers a wide range of
wavelengths. The radiation is a huge threat to astronauts
on missions and orbiting satellites. Flares can be catego-
rized into different classes on the basis of their intensity.
Intense flares are often accompanied by coronal mass ejec-
tions (CMEs), which are large-scale magnetic structures that
contain coronal material. CMEs travel at very high speeds
and can cause large geomagnetic storms when they are di-
rected toward Earth. Geomagnetic storms can have a nega-
tive impact on various technological infrastructures, such as
the Global Positioning System (GPS) and electrical power
grids. The negative impact on these systems, upon which
our society is highly dependent, would critically damage the
economy of a nation (Moldwin 2023).
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Due to the critical impact flares can have, prediction of
flare events is very important for protecting our technologi-
cal infrastructure. Many studies have been performed to un-
derstand the causes and precursors of flares. They have tradi-
tionally been done by building physics-based models of the
flares. However, physics-based models are far from satisfac-
tory for accurately predicting flares ahead of time (Jiao et al.
2020). In recent years, the use of machine learning and sta-
tistical models in the prediction of solar flares has become
common. Many of the studies that used machine learning
for prediction attempted to predict whether an active region
would produce a flare belonging to a particular class in a
certain time frame. Because the class labels are given on the
basis of the peak soft X-ray flux, predicting the classes of
flares allows scientists to estimate the intensity of the flares
and their impact on Earth. Many machine learning models
have been tested on flare data, including long short-term
memory (LSTM) networks and convolutional neural net-
works (CNNs) (Liu et al. 2019; Zheng, Li, and Wang 2019;
Wang et al. 2020; Sun et al. 2022; Datla, Jiang, and Wang
2023).

However, predicting flares is a challenging task, in part
due to the uneven class distribution in the data set. Machine
learning models perform poorly with imbalanced data, as re-
ported in the literature (Sun et al. 2007; Wang, Tian, and
Liu 2019). An earlier study (Liu et al. 2017) attempted to
predict flares of classes B, C, M, and X (ordered from the
smallest to the largest flares, with flares of class X being the
most intense) within the next 24 hours using SHARP pa-
rameters (Bobra et al. 2014). Those authors resampled the
data with random undersampling to combat the class imbal-
ance problem. Later, researchers (Abduallah et al. 2021) ex-
tended that earlier study by using an ensemble algorithm that
makes predictions based on majority voting among random
forests (Breiman 2001), multilayer perceptrons (Rosenblatt
1958), and extreme learning machines (Huang, Zhu, and
Siew 2006). Our study aims to further extend the above work
to improve the predictive capability on solar flare data. We
achieve this goal by combining established machine learning
models in an ensemble algorithm. Furthermore, we employ
sampling methods to address the challenge of imbalanced
classification. The major contributions of our work are:

1. integrating the synthetic minority oversampling technique
(SMOTE) (Chawla et al. 2002) into our method on top of



Table 1: SHARP Parameters Used in This Study
Parameter Description
TOTUSJH Total unsigned current helicity
TOTBSQ Total magnitude of Lorentz force
TOTPOT Total photospheric magnetic free

energy density
TOTUSJZ Total unsigned vertical current
ABSNJZH Absolute value of the net current helicity
SAVNCPP Sum of the modulus of the net current

per polarity
USFLUX Total unsigned flux
AREA ACR Area of strong field pixels in the

active region
TOTFZ Sum of z-component of Lorentz force
MEANPOT Mean photospheric magnetic free energy
R VALUE Sum of flux near polarity inversion line
EPSZ Sum of z-component of normalized

Lorentz force
SHRGT45 Fraction of Area with shear >45◦

random undersampling to handle the heavily imbalanced
data;

2. using nine base models in our ensemble algorithm to in-
crease the prediction accuracy;

3. using logistic regression, instead of simple majority vot-
ing, as the meta-learner in the ensemble algorithm to
make the final decision based on the base models’ out-
comes.

In contrast to existing methods (Liu et al. 2019; Zheng,
Li, and Wang 2019; Wang et al. 2020; Sun et al. 2022), our
work focuses on the multiclass classification of solar flares
with imbalanced data.

Data
We use the Space-weather HMI Active Region Patches
(SHARP) related data products downloaded from the
hmi.sharp data series at the Joint Science Operations Center
(http://jsoc.stanford.edu/). SHARP data prod-
ucts are derived from NASA’s Solar Dynamics Observa-
tory’s (SDO) Helioseismic and Magnetic Imager (HMI) ob-
servations. These data products, released in 2010, are com-
monly used to predict eruptive events such as flares from
solar active regions (Bobra et al. 2014). In 2014, a separate
data series, cgem.Lorentz, was produced based on SHARP
data to include estimates of the Lorentz force. Using these
data series, the researchers (Bobra and Couvidat 2015) cal-
culated 25 parameters that characterize active regions and
used a univariate feature selection algorithm to rank the pa-
rameters. On the basis of the feature selection, they sug-
gested that only the top 13 parameters are important for pre-
dicting solar flares. These parameters are listed in Table 1.
For more details on these parameters, see (Bobra and Cou-
vidat 2015; Liu et al. 2017).

Using SHARP parameters and the Geostationary Opera-
tional Environmental Satellite (GOES) X-ray flare catalog

prepared by the National Centers for Environment Informa-
tion (NCEI), researchers (Liu et al. 2017) constructed a set
of 845 flare samples. This data set contains flares that oc-
curred between May 2010 and December 2016. On the ba-
sis of flare intensity, the flare samples are classified into four
categories with the number of samples in each category en-
closed in parentheses: B (128), C (552), M (142), and X (23).
Our work attempts to predict the class/category of a flare that
would occur within the next 24 hours using this data set and
the 13 SHARP physical parameters listed in Table 1.

Methodology

Class Imbalance

As indicated above, the data set at hand contains signifi-
cantly less X-class flare samples (23 out of 845 samples)
and significantly more C-class flare samples (552 out of 845
samples) than the flares of the other classes. Flares of differ-
ent classes do not occur at the same frequency. Therefore,
this is an imbalanced data set.

Having an imbalanced data set is common in many ar-
eas of study. However, machine learning models are known
to perform poorly when trained on a data set with a heavy
class imbalance. Various studies have shown that the pre-
diction performance for the class to which fewer samples
belong (minority class) is particularly poor with imbalanced
data sets (Sun et al. 2007; Wang, Tian, and Liu 2019). This
is because these machine learning models attempt to maxi-
mize the overall prediction accuracy across all classes, and
therefore pay more attention to classes to which more sam-
ples belong (majority class) and pay less attention to samples
from the minority class (Wang, Tian, and Liu 2019). How-
ever, in many real-world problems that involve imbalanced
data sets, such as rare disease detection, the performance of
the minority class prediction is more important (Sun et al.
2007). This is also true for flare prediction, because X-class
flares are the most impactful flares while being rare com-
pared to smaller flares such as C-class flares.

Undersampling

One possible way to improve the prediction performance
when we have an imbalanced data set is to reduce the num-
ber of samples in the majority class before training a ma-
chine learning model using undersampling techniques. In
our work, we undersample the C-class flares to match the
number of M-class flares in the training data set, where the
M-class has the second-largest number of samples, through
random undersampling as in previous work (Liu et al. 2017;
Abduallah et al. 2021). In doing so, we used the Rando-
mUnderSampler function provided by the imbalanced-learn
package in Python. Random undersampling is a simple un-
dersampling method that removes randomly selected sam-
ples from the majority class to increase the proportion of
other classes. Although random undersampling makes the
training data set more balanced, using it may lose important
information in the majority class.



Oversampling
Additionally, because the number of the X-class flares is
very small, we chose to oversample the data set using
the synthetic minority oversampling technique (SMOTE).
SMOTE is an oversampling method that oversamples the
minority class by generating synthetic data samples of that
class (Chawla et al. 2002). Specifically, SMOTE gener-
ates synthetic data samples by taking each sample S from
the minority class and generating a sample at a random
point between S itself and one of its K-nearest minority
class neighbors in the feature space (Chawla et al. 2002;
He and Garcia 2009).

Using the SMOTE method, we doubled the number of
X-class flares in the training data set prior to training. As
a result of our random undersampling and SMOTE over-
sampling, we significantly reduced the proportion of C-class
flares while increasing the proportion of X-class flares in the
training data set. Together, the sampling methods improve
the accuracy of flare prediction.

The Ensemble Algorithm
Using an ensemble algorithm or using multiple “weak”
models to build one strong model is a way to improve pre-
diction performance in solving machine learning problems.
Various forms of ensemble algorithms have been developed,
among which stacked generalization is widely used (Wolpert
1992). In stacked generalization, different types of model
(such as random forests, support vector machines, etc.) are
trained separately to make predictions individually. Then a
meta-learner uses the predictions made by the individual
models and attempts to make the final decision based on the
individual predictions. Stacked generalization has been used
for solar flare prediction in several studies. For example, re-
searchers employed stacking of CNN and LSTM networks
to achieve better prediction performance in certain settings
(Sun et al. 2022).

Our stacking method is based on the work in (Abduallah
et al. 2021), but takes it a step further by utilizing more base
models. Additionally, we hypothesized that with more base
models, it is unlikely that all the models perform just as well
as each other, in which case there may be a way to make the
final prediction better than a simple majority-voting strat-
egy. Therefore, we used multinomial logistic regression as
the meta-learner to make the final prediction of the flare
classes based on the classifications done by the individual
base models. Note that when using multinomial logistic re-
gression, the classes are weighed by the weights adjusted to
be inversely proportional to the class frequencies. Later in
the experiments section, we will compare this meta-learner
with the simple majority-voting strategy.

Base Models
In the related study (Abduallah et al. 2021), ran-
dom forests (RF) (Breiman 2001), multilayer perceptrons
(MLP) (Rosenblatt 1958), and extreme learning machines
(ELM) (Huang, Zhu, and Siew 2006) were used as base
learners to form the ensemble model with the majority vot-
ing strategy for multiclass classification of solar flares. RF

is a bagging ensemble algorithm in which multiple deci-
sion trees are fit on sub-samples before a majority vote is
taken among the trees. MLP and ELM are both variations of
a feedforward artificial neural network with an input layer,
an output layer, and hidden layers.

In addition to these three models, we adopted the fol-
lowing six commonly used classifiers as base learners: ex-
tremely randomized trees (ERT) (Geurts, Ernst, and We-
henkel 2006), support vector machines (SVM) (Cortes
and Vapnik 1995), K nearest neighbors (KNN) (Fix
and Hodges 1989), radius-based nearest neighbors (R-
NN) (Bentley 1975), adaptive boosting based on decisions
trees (ADA) (Freund and Schapire 1997), and gradient
boosting (GB) (Friedman 2001). ERT, also known as extra
trees, is an ensemble classifier similar to RF with more ran-
domness included. SVM is a popular classification model
that searches for a hyperplane that separates the classes
while maximizing the margin between the classes. KNN is a
simple classifier that determines the classification of a data
point based on the majority vote of its K nearest neighbors in
the feature space. R-NN is similar to KNN, except that the
majority vote is taken based on all points within a certain
radius in the feature space rather than the K nearest neigh-
bors. ADA is an ensemble algorithm based on a series of
“weak” models that are trained iteratively while weights are
assigned to each sample to place emphasis on misclassified
samples in the next iteration. GB is another ensemble algo-
rithm similar to adaptive boosting but uses gradient descent
to optimize the loss function when training its “weak” mod-
els.

Hyperparameter Settings
We used the Python scikit-learn package to implement the
base models. For all models, any parameter not specified be-
low is set to its default value. Our RF is made up of 500 trees,
and 4 randomly chosen features are considered when look-
ing for the best split of a node. Our MLP includes 3 hidden
layers, each consisting of 100 neurons. The ELM has one
hidden layer that contains 200 neurons, and the hyperbolic
tangent function is used as the activation function. The num-
ber of trees in the ERT is set to 500. For the SVM, the radial
basis function (RBF) kernel was used where Hyperparame-
ters C and γ were set to 50 and 0.01, respectively. For the
KNN, K was chosen to be 6 where a weighing function that
is inversely proportional to the distance was used to place a
higher value on the nearest neighbors. A radius of 4 was cho-
sen for the R-NN, and the points were weighed by the same
weighing function as the KNN. Our ADA is based on 500
decision trees with a maximum depth of 8 and the learning
rate is set to 1. The GB utilizes 500 trees with a maximum
depth of 3 and the learning rate is set to 0.01. All of these
parameter values are chosen to optimize prediction perfor-
mance.

Experiments and Results
Experimental Setup
We incorporate random undersampling and SMOTE over-
sampling into our 10-fold cross-validation scheme to under-



Figure 1: Flare prediction results obtained by using different sets of base models with MAJ or LR being the meta-learner in the
ensemble algorithms (stacked generalization).

sample the C class and oversample the X class in the training
set as described in the Methodology section. In performing
the 10-fold cross-validation, we randomly partition the data
set into 10 subsets or folds of equal size while preserving
the ratio of the classes in each fold. Then we use nine folds
to train the models while leaving the remaining one fold for
testing. This partitioning/training/testing process is repeated
10 times. In each time, we denote the training and test sets
as A and B, respectively.

Since training the meta-learner (multinomial logistic re-
gression) requires predictions from every base model and
the corresponding label to be fed to the meta-learner, all base
models are trained and tested within A. Here, we further per-
form another 10-fold cross-validation on the set A. Random
undersampling and SMOTE oversampling are again incor-
porated into the training set in this 10-fold cross-validation
process. For each fold, the nine base models in our stacking
ensemble are first trained to perform multiclass classifica-
tion. These base models produce probability estimates for
each flare class. The predictions made by the base models
serve as the training data for the meta-learner, where each
training sample for the meta-learner contains the predicted
class probabilities from each base model and the actual class
label for the corresponding input. After the meta-learner is
trained, each base model will be retrained using the set A be-
fore testing on the set B. During testing, we first obtain the
class probabilities from each base model for a test sample
in B. Then, we feed these probabilities to the trained meta-
learner to produce a set of class probabilities. We then make
the final decision based on the class probabilities produced
by the meta-learner by selecting the class with the highest
probability as the predicted class for the test sample. There
are two 10-fold cross-validations, and therefore 100 experi-
ments are performed.

Evaluation Metrics
We adopt two metrics to evaluate the performance of the
machine learning models studied here: balanced accuracy
(BACC) and true skill statistics (TSS), both of which are
well suited for imbalanced classification problems (Chawla

2005; Abduallah et al. 2021; Georgoulis et al. 2024). These
metrics are computed considering our task as four separate
binary classification problems, one for each flare class (Abd-
uallah et al. 2021), instead of a four-class classification prob-
lem. For each class i, the true positive (TPi) is defined as the
number of samples that are correctly predicted to be in class
i. The true negative (TNi) is defined as the number of sam-
ples that are not in class i and are predicted not to be in
class i. The false positive (FPi) is defined as the number of
samples that are mistakenly classified in class i. The false
negative (FNi) is defined as the number of samples that are
in class i, but are not predicted to be in class i.

BACC and TSS for each class can be calculated through
the following formulas:

BACCi =
1

2
(

TPi

TPi + FNi
+

TNi

TNi + FPi
), (1)

TSSi =
TPi

TPi + FNi
− FPi

TNi + FPi
. (2)

Computing these metrics on our results allows us to easily
compare the results obtained using different machine learn-
ing methods, both class by class and by the average score
across all four flare classes.

Results of Stacked Generalization
Figure 1 compares the BACC and TSS obtained using the
nine base models described in the Methodology section
against those obtained using the 3 base models RF, MLP
and ELM in (Abduallah et al. 2021). The word “All” in
the figure indicates that all nine base models including RF,
MLP, ELM, ERT, SVM, KNN, R-NN, ADA, GB, are used in
the ensemble algorithms (stacked generalization). The word
“MAJ” denotes that the simple majority voting strategy is
used as the meta-learner, while the word “LR” indicates that
multinomial logistic regression is used as the meta-learner in
the ensemble algorithms. Both random undersampling and
SMOTE oversampling were used to sample training data
during the training phase. Figure 1 shows that adopting the
nine base models proposed here is better than adopting the



Table 2: Flare Prediction Results with Stacked Generalization
BACC Class B Class C Class M Class X Average

All (MAJ) 0.840±0.057 0.674±0.072 0.750±0.076 0.661±0.125 0.731±0.055
All (LR) 0.845±0.062 0.658±0.077 0.676±0.075 0.696±0.092 0.719±0.049

ERT 0.838±0.054 0.679±0.077 0.744±0.080 0.642±0.126 0.726±0.054
SVM 0.820±0.066 0.661±0.074 0.735±0.075 0.660±0.115 0.719±0.052
RF 0.830±0.059 0.666±0.074 0.732±0.078 0.641±0.125 0.717±0.055

ADA 0.833±0.057 0.670±0.070 0.741±0.083 0.613±0.122 0.714±0.051
GB 0.825±0.051 0.650±0.078 0.710±0.077 0.627±0.127 0.703±0.055

KNN 0.814±0.061 0.637±0.070 0.706±0.072 0.651±0.117 0.702±0.045
R-NN 0.776±0.070 0.649±0.073 0.725±0.078 0.641±0.116 0.698±0.049
ELM 0.798±0.061 0.633±0.078 0.666±0.081 0.664±0.112 0.690±0.053
MLP 0.776±0.075 0.621±0.073 0.655±0.084 0.668±0.105 0.680±0.050
TSS Class B Class C Class M Class X Average

All (MAJ) 0.698±0.106 0.361±0.145 0.490±0.134 0.287±0.249 0.459±0.094
All (LR) 0.689±0.124 0.316±0.155 0.352±0.151 0.392±0.184 0.437±0.098

ERT 0.677±0.108 0.358±0.155 0.488±0.159 0.284±0.252 0.452±0.107
SVM 0.639±0.131 0.322±0.148 0.471±0.151 0.321±0.229 0.438±0.103
RF 0.660±0.118 0.332±0.147 0.465±0.157 0.282±0.250 0.435±0.111

ADA 0.666±0.115 0.340±0.139 0.481±0.166 0.227±0.245 0.429±0.103
GB 0.628±0.127 0.299±0.152 0.435±0.161 0.237±0.243 0.399±0.113

KNN 0.627±0.122 0.274±0.141 0.412±0.145 0.302±0.235 0.404±0.090
R-NN 0.552±0.140 0.298±0.145 0.451±0.157 0.282±0.231 0.396±0.099
ELM 0.596±0.121 0.267±0.156 0.333±0.163 0.329±0.223 0.381±0.105
MLP 0.552±0.151 0.242±0.146 0.311±0.169 0.337±0.210 0.360±0.099

three base models, whether MAJ or LR is used as the meta-
learner, in terms of the average scores of both BACC and
TSS. We note that the method in (Abduallah et al. 2021) in-
volves RF, MLP and ELM combined with MAJ, denoted as
RF + MLP + ELM (MAJ) in Figure 1. The highest average
scores for BACC and TSS are achieved when MAJ is used
with all base models. On the other hand, LR performs much
better than MAJ in predicting the X-class flares. Thus, if one
wants to predict all four flare classes, one would need to use
MAJ combined with all nine base models. If one wants to fo-
cus on predicting the X-class flares, LR combined with the
nine base models is recommended.

Table 2 presents the means and standard deviations of
BACC and TSS over the 100 experiments in the two 10-fold
cross-validations used in our study for all machine learning
methods, individual or combined. Both random undersam-
pling and SMOTE oversampling were used to sample train-
ing data during the training phase. Table 2 shows that the
average scores of both BACC and TSS are maximized when
the nine base models are used altogether and the majority
vote (MAJ) is taken. ERT (extremely randomized trees) is
the best individual model that achieves the highest average
scores, both in BACC and in TSS, among the nine base mod-
els. When looking at the performance of predicting the rare,
strongest X-class flares, the BACC and TSS obtained by us-
ing all nine base models combined with multinomial logistic
regression (LR) as the meta-learner are higher than those ob-
tained by all other methods. This finding is consistent with
what we see in Figure 1, showing that this form of stacked
generalization (LR) may not produce the highest average
scores, but does very well in predicting the rare, strongest

X-class flares.

Results of Sampling
Figure 2 compares the performance metric values obtained
by applying different sampling techniques to training data
where RUS denotes random undersampling. All nine base
models were used in the ensemble algorithms. Figure 2
shows that for both majority voting (MAJ) and multino-
mial logistic regression meta-learners, the average BACC
and TSS scores are maximized when random undersam-
pling (RUS) and SMOTE oversampling are used together.
The worst average BACC and TSS scores are obtained when
MAJ is used with neither RUS nor SMOTE implemented.
Between the two sampling techniques, RUS is better than
SMOTE in producing the average BACC and TSS scores.
On the other hand, SMOTE is more effective than RUS in
predicting X-class flares.

Conclusion
In this paper, we present a new method for predicting solar
flares using SHARP physical parameters. This method con-
sists of a stacking ensemble algorithm that uses nine well-
known machine learning models as base learners and multi-
nomial logistic regression (LR) as the meta-learner. Further-
more, the method adopts random undersampling (RUS) and
SMOTE oversampling to overcome the imbalanced classifi-
cation issue. The proposal method outperforms the method
in earlier study (Abduallah et al. 2021), Specifically, our ex-
perimental results show that higher average BACC and TSS
scores can be achieved using RUS and SMOTE than when



Figure 2: Flare prediction results obtained by different sampling techniques.

using only one or none of the sampling methods. The high-
est average BACC and TSS scores are obtained using RUS,
SMOTE, and the majority voting (MAJ) meta-learner. How-
ever, for the prediction of the rare, strongest X-class flares,
LR is better than MAJ. On the basis of these results, we
conclude that the proposed method is viable for solar flare
prediction in imbalanced data.
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