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Abstract

Emotion recognition is an increasingly relevant field
due to its direct implications for various sectors of soci-
ety. The area aims to enhance the understanding of how
emotions influence human behavior. Exploring brain
activity analysis through electroencephalogram signals
becomes possible when considering that emotions can
manifest non-verbally. In this scenario, machine learn-
ing applications prove promising due to the complex-
ity of recognizing emotions from electrical signal data
from the brain. The case study focuses on DEAP, a
recognized dataset constructed through experiments in
electroencephalography, exposing subjects to musical
and visual stimuli. The main objective of this work is
to present a pipeline for the classification of emotions
based on images of topographic maps generated from
the EEGLAB tool and electroencephalogram signals.
Additionally, the contributions of this work include the
presentation of a structured dataset created through the
mapping of temporal, spatial, and frequency data de-
rived from topographic images and models for predict-
ing dimensional emotions of arousal and valence based
on the new dataset. Results demonstrate accuracies of
85.46% and 85.05% for the classification of low/high
arousal and valence emotions, respectively.

Introduction
Emotions are complex conditions described by mental states
resulting from stimuli (Mauss and Robinson 2009). These
mental states guide behavior to enhance adaptability to
changes in the environment. Given the significance of emo-
tions in human life, emotion recognition encompasses var-
ious applications, including medicine, neuroscience, and
psychology (Niedenthal and Ric 2017).

Regarding the perspective of emotions, two methods can
be used to categorize them: discrete and dimensional. The
discrete perspective defines emotions through states such as
joy and sadness. However, the dimensional perspective de-
scribes emotions based on scales. Two relevant emotional
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dimensions are arousal and valence, which are related to
the degrees of intensity and pleasure, respectively (Hamann
2012).

Emotions can manifest non-verbally through indicators
such as brain activity (Polzin 2000). Therefore, sensors can
capture physiological signals to obtain emotion recognition.
In particular, electroencephalogram (EEG) is a non-invasive
procedure that analyzes brain electrical activity captured
through electrodes positioned on the scalp. Thus, EEG plays
an essential role in neuroscience by enabling the investiga-
tion of the human brain in various conditions and mental
states (Sanei and Chambers 2021).

EEG signals are complex, exhibiting non-stationary and
highly non-linear time series properties in the spatial, tem-
poral, and frequency domains (Del Pozo-Banos et al. 2014).
The spatial domain signifies the brain cortex region, the tem-
poral domain indicates the event moment, and the frequency
domain reflects the power. These EEG characteristics, with
the subjectivity of emotions, present various challenges to
this area. In this scenario, Machine Learning (ML) models
enable the representation of systems through computational
tools capable of identifying patterns in data and utilizing
them for predictions (Alpaydin 2014).

Researchers in the literature focus on directly processing
the brain signals (Samavat et al. 2022) or processing images
from topographic maps (Sharma, Pachori, and Sircar 2020)
to construct their systems. Specifically, topographic maps
in the context of electroencephalography provide a graph-
ical representation of the spatial distribution of brain electri-
cal potential variations. Colors denote the frequency power
spectrum, with lower power regions in dark blue and higher
power regions in dark red. This method improves the com-
prehension of the relationships between brain activities in
diverse regions (Hooi, Nisar, and Voon 2015).

This work focuses on the DEAP dataset (Koelstra et al.
2012), widely recognized and utilized in emotion recogni-
tion (Garg, Verma, and Singh 2023). It includes EEG signals
from experiments exposing subjects to music video stimuli,
who then self-assess on emotional dimensions.

Regarding this context, the present study proposes a ma-
chine learning-based pipeline for emotion classification us-
ing a novel structured dataset. We constructed the dataset
by mapping data from images of topographic maps derived
from the EEGLAB tool (Delorme and Makeig 2004) and



EEG signals. Based on the new dataset, we also developed
models for emotion predictions, considering low or high in-
tensity in the emotional dimensions of arousal and valence.

Theoretical Background
This Section presents fundamental concepts about electroen-
cephalogram signals. Brain activity occurs through synapses
when a neuron and another cell communicate. In this pro-
cess, an electrical signal propagates and releases neurotrans-
mitters, which are chemical substances responsible for trans-
mitting the signal between neurons, generating a sequence
of electrical and chemical events. Based on these signals,
the central nervous system enables the perception, interpre-
tation, and response to the environment (Squire et al. 2008).

These electrical events can be observed and measured
through EEG, a procedure capable of detecting and record-
ing the signals generated by the brain cortex using electrodes
positioned on the scalp (Boutros et al. 2011). EEG sig-
nal acquisition follows electrode placement standards such
as the International 10-20 System (Herwig, Satrapi, and
Schonfeldt-Lecuona 2003), which specifies that the distance
between electrodes should be either 10% or 20%, ensuring
that the proportion between electrodes is maintained regard-
less of the individual’s head size or the number of electrodes
in the EEG device. As discussed, EEG signals exhibit spa-
tial, temporal, and frequency aspects.

The spatial aspect corresponds to the location of the elec-
trodes on the scalp about the lobes of the brain cortex. Each
lobe is responsible for specific functionalities, namely: the
Frontal Lobe F, responsible for motor control, decision-
making, reasoning, personality, and emotional control; the
Occipital Lobe O, dedicated to visual processing; the Pari-
etal Lobe P, responsible for processing sensory information,
including touch, temperature, and pain; and finally, the Tem-
poral Lobe T, related to hearing, language processing, and
memory (Tortora and Derrickson 2018).

Figure 1 illustrates the electrode placement locations for
EEG devices with 32 channels based on the International
System 10-20. In this system, odd and even numbers indi-
cate the left and right hemispheres, respectively, and the suf-
fix Z indicates the midline. The prefixes F (frontal) and C
(central) refer to the frontal and central regions of the head
together with Fp (prefrontal), AF (anterior frontal), and FC
(frontal-central). The prefixes P (parietal) and CP indicate
the parietal region. Finally, T refers to the temporal region,
and O and PO indicate the occipital region.

The temporal aspect represents the dynamics of the brain
over time. Segmenting the data using time windows to facil-
itate the EEG analysis is possible. The dynamic aspects of
the brain over time lead to the use of these windows to divide
the EEG signal into smaller parts (Casciola et al. 2021). For
example, a 60-second EEG signal can be segmented using 1-
second time windows (epochs), thus generating 60 signals.

Finally, the frequency aspect represents the power ampli-
tude, as indicated by the signal’s magnitude of oscillations
per second. Five frequency bands can categorize these os-
cillations: i) Delta, characterized by high amplitude, occurs
during deep sleep; ii) Theta, typically found in children and
mental states of drowsiness; iii) Alpha, characterized by a

Figure 1: International 10-20 System of EEG with 32 elec-
trodes. Source: (Abdelaal, Alsawy, and Hefny 2015)

lack of concentration; iv) Beta, typically found in adults
and mental states of attention; and v) Gamma, character-
ized by low amplitude, occurs in states of mental hyperac-
tivity (Sanei and Chambers 2021).

Related Work
This Section aims to present the main related works, encom-
passing machine learning pipelines for emotion recognition
using EEG signals from DEAP.

In (Qing et al. 2019), the authors proposed a pipeline for
emotion identification by polarity, using a temporal window
with 50% overlap and five frequency bands. It achieved a
63% accuracy independently of the subject with shallow ML
algorithms, such as Decision Tree, K-Nearest Neighbors,
and Random Forest. In (Asghar et al. 2019), the proposed
system utilizes EEG signals mapped to spectrograms by
Continuous Wavelet Transform (CWT) to recognize emo-
tions in four quadrants: high valence with high arousal, high
valence with low arousal, low valence with high arousal,
and low valence with low arousal. The results indicated an
average accuracy per subject of 77.4%, using Deep Learn-
ing (DL) for feature extraction and Support Vector Machine
(SVM) for classification.

The system presented in (Sharma, Pachori, and Sircar
2020) can also classify emotions in four quadrants, using
the EEG signals to create topographic maps with Third-
order Cumulants for feature extraction across five frequency
bands. This study achieved an average accuracy of 82% per
subject with a model based on Long Short-Term Memory
(LSTM). In (Demir et al. 2021), the authors developed bi-
nary models to classify high/low arousal and valence, gen-
erating spectrograms through CWT. Combining feature ex-
traction by DL with the SVM classifier resulted in an accu-
racy of 91.07% for valence and 98.98% for arousal, consid-
ering the average across models developed for each subject.

Finally, the study of (Samavat et al. 2022) utilizes brain
signals to construct a system for classifying emotions by
polarity. It involves signal segmentation into two-second
windows, feature extraction using Differential Entropy, and
a Bi-LSTM block to incorporate temporal information
into classification. The results demonstrate an accuracy of
72.38% using the Gamma band frequency.

Based on related work, the studies in the literature divide
between directly processing the brain signal and processing
mapped images of EEG signals. Furthermore, the excellent



results presented by the studies are centered on the classifi-
cation of emotions for a given individual in models trained
for this same individual. In the context of emotion recog-
nition, this study proposes an approach based on images
of brain topographic maps generated from EEG signals in
EEGLAB. In contrast to previous works, our research intro-
duces a structured dataset that maps brain activation levels
by region from these images, providing a novel approach to
EEG signal analysis. We leverage this constructed dataset to
present predictive models trained with data from multiple in-
dividuals for arousal and valence, incorporating spatial, tem-
poral, and frequency analyses.

Proposed Approach
This Section will present the proposed system for this study,
detailing the emotion recognition pipeline and method-
ological decisions. We developed the pipeline using the
OpenCV (Bradski and Kaehler 2008), Pandas (McKinney
and others 2010), Scikit-Learn (Pedregosa et al. 2011) li-
braries in Python (Van Rossum and Drake 2009), and the
EEGLAB tool (Delorme and Makeig 2004).

As illustrated in Figure 2, the beginning of the pipeline
involves a set of EEG signals as input. A conversion pro-
cess transforms these data into topographic images repre-
senting the brain. Subsequently, Digital Image Processing
(DIP) techniques are applied to these images to segment the
brain by electrodes (regions of interest). We map the acti-
vation levels in areas of the cortex through the colors of the
pixels. Thus, we trained machine learning algorithms based
on the data in a structured format. Finally, the pipeline al-
lows for predictions, utilizing the best-performing ML mod-
els, to classify emotions from the perspective of low/high
intensity in two dimensions: arousal and valence.

EEG Signals

Mapping of pixel
colors by electrode

Training/Evaluation
of ML algorithmsEmotion Prediction

Conversion to brain
images in EEGLAB

Electrode
Segmentation

Electrode Filter

Brain Filter

Dilation and
Resizing

Conversion to HSV
color space

Brain Segmentation

Arousal

Valence

Figure 2: Overview of the proposed system.

In this scenario, the following methodological steps will
be detailed: i) transformation of EEG signals into topo-
graphic maps and image processing; ii) construction of a
structured dataset through mapping brain activation levels
for each electrode using pixel colors in the images; and iii)
development of predictive models for emotions using ML.

Topographic Maps Processing
The case study for this work is the DEAP dataset, as pre-
sented in Section 1. This dataset includes EEG signals col-
lected from 32 participants using 32 electrodes. Each subject
was exposed to 40 one-minute segments of music videos and
provided emotional ratings for these stimuli in dimensions
such as arousal and valence. These self-assessments range
from one to nine on a continuous scale.

We used EEGLAB to explore and analyze the images de-
rived from EEG signals. EEGLAB can generate images of
brain topographic maps, illustrating the spatial distributions
of brain electrical activities across time and frequency (Xu
et al. 2020). Therefore, we generate topographic images in
EEGLAB based on DEAP.

The resulting dataset contains 238,080 images capturing
the brain activity of the 32 subjects who watched the 40
videos. Considering 62 one-second intervals, defined as win-
dows, the script generated 62 images for each experiment.
Thus, each image corresponds to a window data and covers
one of three frequency bands represented by an intermedi-
ate sample: Alpha (10 Hz), Beta (22 Hz), or Gamma (42
Hz). We have not considered frequencies from the Delta and
Theta bands because, as discussed in the background Sec-
tion, they are common only in sleep. Additionally, we used
only frequency samples due to the high processing time and
the storage required to generate data.

Figure 3 shows three images generated during an experi-
ment, each corresponding to a distinct brain frequency. The
figure shows the activation level in brain regions through a
color scale. Therefore, warm color pixels, such as dark red,
represent regions with high brain activity. Intermediate color
pixels, like yellow, represent regions of moderate brain in-
tensity. Furthermore, cold color pixels, such as dark blue,
represent regions with low brain activity.

Figure 3: Example of topographic brain maps generated in
EEGLAB for three frequencies.

The images generated contain information outside the re-
gion of brain activation of interest, such as lateral represen-
tations of the ears, nose, and sampling frequency. Using a
filter called “Brain Filter” processes the images to eliminate
these areas external to the circle representing the brain. We
created this filter using the following DIP steps: conversion
of an original image to grayscale, application of dilation to
expand the object’s area around the pixels, and inverted bi-
nary thresholding, resulting in a filter that marks pixels from
the region of interest as white and the rest as black.

Following this, we dilated the segmented images to re-
move lines within the brain and resized them from 875×656
to 250×250, keeping essential data. The subsequent pro-
cess involves image segmentation based on electrode for-



mat using the “Electrode Filter” for analyzing brain regions.
We constructed this filter from an image representing elec-
trodes in the 10-20 International System, following the DIP
steps: edge detection of each electrode using the Canny
Edge (Canny 1986) algorithm; dilation to expand internal ar-
eas around the electrodes; transforming rounded shapes into
quadrilaterals based on contour information, considering ad-
ditional data from the area of the electrodes.

Finally, we convert the segmented brain electrode images
from RGB to the HSV color space. After this, the pixels of
the images are described through the hue, saturation, and
value properties and no longer by the mixture of primary
colors (red, green, and blue). Respectively, hue, saturation,
and value are related to the color tone, purity, and bright-
ness (Gonzales and Woods 2019). This conversion provides
an alternative form to represent colored images closer to hu-
man perception of colors.

Structured Dataset
Based on the image segments described in the previous Sec-
tion, it becomes possible to create a structured dataset that
organizes the image data mapping according to the level of
brain activation and the corresponding electrode areas.

Considering that the colors in the images generated in
EEGLAB correspond to the level of brain activity, as shown
in Figure 3, the pixel colors can establish a heuristic rela-
tionship with low, medium, and high levels of brain activity.
Thus, to construct the structured dataset based on OpenCV
scales, we map low brain activity segments with hue val-
ues from 90 to 150 (cold colors), medium activity with hue
from 30 to 90 (intermediate colors), and high activity with
hue values from 150 to 30 (warm colors). Saturation limits
range from 80 to 255, and value limits range from 40 to 255.

Therefore, it is possible to determine the percentage of
pixels associated with each electrode to different levels of
brain activity. For example, assuming there are 100 pixels
over an electrode and 5 of these pixels are cold colors, 25
are intermediate colors, and 70 are warm colors, we can in-
terpret that, respectively, 5% of the electrode exhibits low
levels of brain activity, 25% medium, and 70% high levels.

The mapping of brain activation levels by electrodes,
combined with the tabular data detailed in DEAP, allows the
construction of a structured and unified dataset. Thus, the
entries of the structured dataset include subject and experi-
ment identification, epoch and sampling frequency, and sub-
jects’ self-assessments related to two emotion scales: arousal
and valence. Furthermore, the dataset contains 32 columns
for each of the 32 EEG signal electrode channels in DEAP,
where the entry in each of these columns consists of a tu-
ple representing the percentage of brain activation at low,
medium, and high levels in that order. In this way, the com-
plete dataset consists of 38 columns and 238,080 records.

The constructed structured dataset provides an alternative
format for EEG data analysis. This dataset allows specific
experiments, distinguishing itself from raw and image for-
mats. The drawbacks of raw and image data include inter-
pretability issues and the need for extensive storage and pro-
cessing capacity, especially in the last format.

Emotion Predictor Models
We divided the EEG signals into segments corresponding
to the mapping of each electrode arranged in a structured
dataset, as discussed in the previous Section. Each electrode
can contribute to emotion recognition, as it contains data
about the percentage levels of activation categorized as low,
medium, and high. Therefore, it is possible to estimate emo-
tion classes based on the intensity of brain activation.

To investigate the relevance of brain regions in emotion
prediction, we generated 11 combinations based on elec-
trode mapping. Table 1 details these configurations used in
the experiments, indicating the number of attributes for each
dataset. For example, the Temporal region consists of elec-
trodes with the prefix T, totaling two attributes.

Table 1: Configuration of the dataset regarding its attributes.
Dataset Attributes Total

All
AF3, AF4, CZ, C3, C4, CP1, CP2, CP5, CP6

32FZ, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2
PZ, P3, P4, P7, P8, PO3, PO4, OZ, O1, O2, T7, T8

AF AF3, AF4 2
C CZ, C3, C4 3

CP CP1, CP2, CP5, CP6 4
F FZ, F3, F4, F7, F8 5

FC FC1, FC2, FC5, FC6 4
Fp Fp1, Fp2 2
P PZ, P3, P4, P7, P8 5

PO PO3, PO4 2
O OZ, O1, O2 3
T T7, T8 2

The preprocessing steps for the tabular data for the arousal
and valence targets are specified below. Initially, we trans-
formed the values from a continuous format, ranging from
1 to 9, to a binary format, allowing the models to make pre-
dictions from a low (0) or high (1) perspective. The ideal
value to split the dimensions would be 5, the mean of the
rating scale. However, it was necessary to balance the data.
This operation involved setting specific thresholds to use
the highest number of records, with thresholds of 5.25 for
arousal and 5.04 for valence. Additionally, random removal
of rows was applied to address valence imbalances, remov-
ing 124 records. Due to missing data, we excluded experi-
ments 12 and 24 for subject 11 from our models.

In addition to assessing the frequency variation at 10, 22,
and 42 Hz and spatial aspects, it is possible to explore tem-
poral aspects through EEG signals. For this, temporal win-
dows of 1, 4, 10, and 20 seconds were considered, with 50%
overlap for windows longer than one second. For example,
considering an 8-second signal with a 4-second window and
50% overlap, we would have three combined segments: 0
to 4, 2 to 6, and 4 to 8. The averaging of percentage levels
yields the combinations for each electrode’s segment.

With the data properly adjusted, the next step involved
stratifying the division into training and testing sets. Thus,
we allocate 80% of the data to training classification algo-
rithms and 20% to testing the performance of the constructed
models. Table 2 shows the number of records, by frequency,
for training and testing for each emotional dimension and
each type of configuration related to temporal windows.

Considering the constructed dataset and the spatial, tem-
poral, and frequency configurations, three classification al-



Figure 4: Arousal accuracies. From left to right, the charts show the results of the K-NN, RF, and SVM algorithms.

Figure 5: Valence accuracies. From left to right, the charts show the results of the K-NN, RF, and SVM algorithms.

Table 2: Training and testing dataset configurations.
Target Temporal window configuration

1 second 4 seconds 10 seconds 20 seconds
Train Test Train Test Train Test Train Test

Arousal 63,388 15,848 30,672 7,668 12,268 3,068 6,134 1,534
Valence 63,290 15,822 30,624 7,656 12,250 3,062 6,124 1,532

gorithms were trained and evaluated: i) K-Nearest Neigh-
bors (K-NN), this algorithm predicts based on the majority
of training examples closest/similar in a multidimensional
space (Sanei and Chambers 2021); ii) Random Forest (RF),
this algorithm calculates the majority vote of predictions
generated by a group of decision trees (Alpaydin 2014); and
iii) Support Vector Machine (SVM), this algorithm seeks the
maximum margin that separates the hyperplane to gather the
most significant number of data in a area (Geron 2019).

The hyperparameters of the algorithms were determined
using the Grid Search (LaValle, Branicky, and Lindemann
2004) technique to identify the best combination of inputs
for each model. Table 3 describes the input hyperparame-
ters considering the Scikit-Learn (Pedregosa et al. 2011) li-
brary for K-NN, RF, and Radial Basis Function kernel SVM.
The previously separated training data were applied using
cross-validation in five distinct groups, with five iterations,
to assess the model’s generalization capability. Thus, each
iteration refers to the set with validation data and the rest
to the training data. The criterion chosen to determine the
best performance among different hyperparameter config-
urations was the F1-Score, given its suitability for creat-
ing rankings. In general, we developed the best-performing
models based on the hyperparameters in bold in Table 3.

In this context, we generate at least 396 models per target,
considering three frequencies (10, 22, and 42 Hz), 11 com-
binations of brain regions (Table 1), four temporal window

Table 3: Input hyperparameters.
Algorithm Hyperparameters

K-NN {‘n neighbors’: [1, 3, 5, 7, 9]}
RF {‘n estimators’: [100, 200], ‘max depth’: [10, None]}

SVM {‘C’: [0.1, 1, 2]}

configurations (Table 2), and three ML algorithms (Table 3).

Results and Discussions
This Section will present the results of this study. Thus, we
will discuss the results of the models developed for emotion
prediction, considering the dimensions of arousal and va-
lence. For this study, we utilized four metrics for evaluating
classifiers: accuracy, precision, recall, and F1-Score. Higher
values indicate superior results, as reflected in the metrics.

Figures 4 and 5 respectively describe accuracy results for
the models constructed targeting arousal and valence. There
are three charts for each of these figures, representing the
central classifiers of this study. These charts consider the es-
sential features of EEG signals, including spatial, temporal,
and frequency domains. When analyzing these charts, it is
possible to observe the distribution of points along the axes,
enabling the identification of patterns in the data.

The models created using the All dataset show promis-
ing performances in configuration scenarios compared to
datasets composed of attributes related to specific electrode
regions, both for arousal and valence. Thus, the results em-
phasize the significance of this composition, where the mod-
els rely on data from all 32 EEG electrodes.

Although the arousal and valence results exhibit similari-
ties in accuracy values by configuration, there are particular-
ities. For instance, the independent brain region that showed



Table 4: Results of classification models for the best and worst cases.
Emotion Temporal Window (s) Frequency (Hz) Brain Region Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1
Best Case (K-NN)

Arousal 20 42 All 85.51 85.42 85.4 85.53 85.45 85.47 85.46
Valence 20 42 All 85.01 85.1 85.12 84.99 85.06 85.04 85.05

Worst Case (K-NN)
Arousal 1 10 Fp 49.82 49.84 47.73 51.93 48.75 50.86 49.83
Valence 10 10 AF 49.54 49.54 49.31 49.77 49.43 49.66 49.54

more promising results in a specific format differs for both
dimensions. In this scenario, the model based on attributes
from the frontal region F at 22 Hz demonstrated an accu-
racy of 65.71% for arousal. In comparison, the model with
attributes from the parietal region P at 42 Hz achieved an ac-
curacy of 64.56% for valence. In both cases, we constructed
these models using RF and a longer temporal window.

In general terms, the results of this case study indicate
that F and P datasets, along with central adjacent configura-
tions FC and CP, may be relevant for exploratory studies of
patterns in specific brain regions. As discussed in the Back-
ground Section, the frontal region is a brain area related to
emotion control. However, dataset configurations with fewer
attributes, such as the temporal T, often showed less favor-
able results.

We constructed models for three frequency samples in the
Alpha, Beta, and Gamma bands. Based on the results, mod-
els with Beta and Gamma frequency bands performed bet-
ter than the Alpha band, especially with temporal windows
exceeding 1 second. Notably, frequencies in the Alpha band
are associated with a state of relaxation. When analyzing the
variation in temporal windows, we observe a constant per-
formance for all algorithms with a 1-second window, with
SVM standing out positively at 42 Hz. However, we note
a significant improvement when using 4-second temporal
windows or more. The K-NN algorithm stands out positively
for temporal windows exceeding 1 second with overlap, es-
pecially considering data from all electrodes.

To support the results in the charts, Table 4 summarizes
the results for the emotion models created in this study for
the best and worst cases. According to this table, the best re-
sults for arousal and valence pertain to models constructed
using longer temporal windows, a frequency of 42 Hz, and
the use of data from all EEG signal electrodes. Upon ex-
amining the metrics, it is noticeable that the models do not
explicitly prefer predicting one class significantly more than
the other. Furthermore, the models based on shorter tempo-
ral windows, 10 Hz, for brain regions related to datasets with
fewer attributes generated the worst results. K-NN was the
algorithm responsible for constructing the best and worst-
case models. Thus, despite its simplicity, this algorithm can
apply to complex problems, with the observation that it is
directly affected by the attributes used.

Generally, studies in the literature base them on construct-
ing specific models for each individual, which can lead to
superior performance. However, this work created models
trained with data from multiple subjects using a novel data
format. Thus, the results were promising, considering the
complexity of the field, either due to the complex nature of

EEG signals or the subjectivity of emotions.

Conclusion and Future Works
This work proposes an ML pipeline for emotion recognition
based on brain topographic maps derived from EEG signals,
using the DEAP dataset as a case study. With a focus on this
theme, the main objectives were to construct a structured
dataset by mapping brain regions and their respective acti-
vation intensities in the topographic maps generated using
the EEGLAB tool. Additionally, the study involved analyz-
ing and developing predictive models for emotions.

The constructed dataset provides an alternative approach
for analyzing data in EEG-based emotion recognition tasks.
We constructed predictive models using machine learning
techniques, utilizing approximately 238 thousand records
from the constructed structured dataset in the experiments.
Three classification algorithms, K-NN, RF, and SVM, were
trained. We developed models with frequency, spatial, and
temporal variations in each algorithm experiment.

About the results, using data from all electrodes positively
contributed to the performance of predictive models. How-
ever, when analyzing specific brain regions, the frontal area
stands out positively. Furthermore, models created with data
in the Beta and Gamma frequencies yielded more efficient
results, especially at 42 Hz. The use of temporal windows
proved effective, with consistent results even with 4-second
windows, considering the complexity of the data. Respec-
tively, the K-NN and SVM algorithms demonstrated more
satisfactory responses in the emotion prediction task, es-
pecially when using temporal windows with and without
overlap. Thus, the results show models with an accuracy
of 85.46% and 85.05% for the classification of low/high
arousal and valence emotions, respectively, with a 20-second
window, a frequency of 42 Hz, K-NN, and all electrodes.

This research represents a relevant study topic in the con-
text of emotion recognition through EEG signals, trans-
formed into topographic maps and mapped into a structured
dataset. The structured approach for analysis and model con-
struction allows for an alternative format to analyze the be-
havior and functioning of the human brain through emotion,
making it attractive for the field of neuroscience.

For future work, the intention is to explore and develop
new models for emotion recognition, considering differ-
ent frequency and temporal samples. Additionally, there are
plans to conduct additional experiments with the structured
dataset, exploring new combinations of brain regions. An-
other line of research will involve conducting experiments
using the topographic map dataset with segmented brain re-
gions using deep learning algorithms.
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