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Abstract

The only recently introduced System W is a nonmonotonic
inductive inference operator exhibiting some notable proper-
ties like extending rational closure and satisfying syntax split-
ting postulates for inference from conditional belief bases.
A semantic model of system W is given by its underlying
preferred structure of worlds, a strict partial order on the set
of propositional interpretations, also called possible worlds,
over the signature of the belief base. Existing implementa-
tions of system W are severely limited by the number of
propositional variables that occur in a belief base because
of the exponentially growing number of possible worlds. In
this paper, we present an approach to realizing nonmono-
tonic reasoning with system W by using partial maximum
satisfiability (PMaxSAT) problems and exploiting the power
of current PMaxSAT solvers. An evaluation of our approach
demonstrates that it outperforms previous implementations of
system W and scales reasoning with system W up to a new
dimension.

1 Introduction
Conditionals of the form “If A then usually B” establish a
plausible connection between the antecedent A and the con-
sequent B, while still allowing for exceptions. Such condi-
tionals play a major role in uncertain reasoning, and many
different semantics have been proposed for them, like prob-
ability distributions, plausibility orderings, possibility dis-
tributions, ranking functions and special instances of them,
or conditional objects, (see, e.g., (Adams 1975; Nute 1980;
Spohn 1988; Kraus, Lehmann, and Magidor 1990; Dubois
and Prade 1994; Benferhat, Dubois, and Prade 1997; Kern-
Isberner 2001; Beierle et al. 2021)).

Here, we consider system W (Komo and Beierle 2020;
2022), an only recently introduced inference method that
exhibits some notable properties put forward as desirable
for nonmonotonic reasoning from conditional belief bases.
For instance, system W satisfies system P (Kraus, Lehmann,
and Magidor 1990), extends rational closure (Lehmann
and Magidor 1992), avoids the drowning problem (Ben-
ferhat et al. 1993), fully complies with syntax splitting
(Kern-Isberner, Beierle, and Brewka 2020; Haldimann and
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Beierle 2022a; 2022b), and besides lexicographic inference
(Lehmann 1995), up to now, system W is the only infer-
ence operator shown to satisfy also the more general prop-
erty of conditional syntax splitting (Heyninck et al. 2023).
However, the existing implementation of system W (Beierle
et al. 2022) severely limits the number of propositional vari-
ables that can occur in a conditional belief base ∆. This is
due to the exponentially growing number of possible worlds
because the semantic model of system W, a strict partial or-
der on the set of possible worlds, is constructed completely
for computing a system W inference in the context of ∆.

In this paper, we present an approach to realizing non-
monotonic reasoning with system W by using partial maxi-
mum satisfiability (PMaxSAT) problems and exploiting the
power of current PMaxSAT solvers (Larrosa and Rollon
2020; Bjørner et al. 2019; Ignatiev, Morgado, and Marques-
Silva 2019). First evaluation results of our approach demon-
strate that it outperforms previous implementations of sys-
tem W and scales reasoning with system W up to a new di-
mension. In summary, the main contributions of this paper
are:

• Modelling system W concepts as Partial MaxSAT prob-
lems.

• Development of SWinf, an algorithm for system W
inference based on Partial MaxSAT.

• Implementation of SWinf in Python using a current
MaxSAT solver.

• Evaluation of the SWinf implementation demonstrating
its superiority over previous implementations.

After recalling the required background of conditional
logic in Sec. 2, we briefly present system W in Sec. 3 and
illustrate it with examples. In Sec. 4, we model system W
concepts as Partial MaxSAT problems which are then used
for developing SWinf in Sec. 5. Section 6 describes our im-
plementation of SWinf and presents the resulting evaluation
results. Section 7 concludes and points out future work.

2 Background: Conditional Logic
A (propositional) signature is a finite set Σ of propositional
variables. For a signature Σ, we denote the propositional lan-
guage over Σ by LΣ. Usually, we denote elements of sig-
natures with lowercase letters a, b, c, . . . and formulas with



uppercase letters A,B,C, . . .. We may denote a conjunction
A∧B byAB and a negation¬A byA for brevity of notation.
The set of interpretations over a signature Σ is denoted as
ΩΣ. Interpretations are also called worlds and ΩΣ is called
the universe. An interpretation ω ∈ ΩΣ is a model of a for-
mula A ∈ LΣ if A holds in ω. This is denoted as ω |= A.
The set of models of a formula (over a signature Σ) is de-
noted as Mod Σ(A) = {ω ∈ ΩΣ | ω |= A} or sometimes
as ΩA. The Σ in Mod Σ(A) can be omitted if the signature
is clear from the context. A formula A entails a formula B
if Mod Σ(A) ⊆ Mod Σ(B). By slight abuse of notation we
sometimes interpret worlds as the corresponding complete
conjunction of all elements in the signature in either positive
or negated form.

A conditional (B|A) connects two formulas A,B and
represents the rule “If A then usually B”, where A is the an-
tecedent andB the consequent of the conditonal. The condi-
tional language over a signature Σ is denoted as (L|L)Σ =
{(B|A) | A,B ∈ LΣ}. A conditional belief base is a fi-
nite set of conditionals. We use a three-valued semantics of
conditionals in this paper (de Finetti 1937). For a world ω
a conditional (B|A) is either verified by ω if ω |= AB,
falsified by ω if ω |= AB, or not applicable to ω if ω |=
A. Popular models for conditional belief bases are ranking
functions (also called ordinal conditional functions, OCF)
(Spohn 1988) and total preorders (TPO) on ΩΣ (Darwiche
and Pearl 1997); transformations among these and other se-
mantics are studied by Beierle and Kern-Isberner (2012).
Semantic structures for conditionals have in common that
they model a conditional (B|A) if they consider its verifica-
tion AB to be strictly more plausible, or less suprising, etc.,
than its falsification AB; they model a belief base ∆ if they
model every conditional in ∆. A belief base ∆ is consistent
if it has a model.

Reasoning with conditionals is often modelled by infer-
ence relations. An inference relation is a binary relation |∼
on formulas over an underlying signature Σ with the intu-
ition that A |∼B means that A (plausibly) entails B. (Non-
monotonic) inference is closely related to conditionals: an
inference relation |∼ can also be seen as a set of conditionals
{(B|A) | A,B ∈ LΣ, A |∼B}. An inductive inference oper-
ator (Kern-Isberner, Beierle, and Brewka 2020) is a function
that maps each belief base to an inference relation.

3 System W
The inductive inference operator system W (Komo and
Beierle 2020; 2022) takes into account the tolerance infor-
mation expressed by the ordered partition of ∆.

Definition 1 (ordered partition OP(∆) = (∆0, . . . ,∆k)
(Goldszmidt and Pearl 1996)). A conditional (B|A) is toler-
ated by a set of conditionals ∆ if there exists a world ω ∈ ΩΣ

such that ω verifies (B|A) and ω does not falsify any condi-
tional in ∆, i.e., ω |= AB and ω |=

∧n
i=1(Ai ∨Bi).

The ordered partition OP(∆) = (∆0, . . . ,∆k) of a belief
base ∆, also called tolerance partition, is the partition of ∆
where each ∆i is the (with respect to set inclusion) maximal
subset of

⋃k
j=i ∆j that is tolerated by

⋃k
j=i ∆j .
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Figure 1: The preferred structure on worlds <w
∆bird

induced
by the belief base ∆bird from Example 1.

It is well-known that OP(∆) exists iff ∆ is consistent
(Pearl 1990).

Example 1 (∆bird ). Let Σ = {b, p, f, w} be the signa-
ture representing birds, penguins, flying things and winged
things, and let ∆bird contain r1 = (f |b), r2 = (f |p), r3 =
(b|p), and r4 = (w|b). For instance, r1 expresses “birds usu-
ally fly”. ∆bird is consistent, and OP(∆bird) = (∆0,∆1)
with ∆0 = {(f |b), (w|b)} and ∆1 = {(f |p), (b|p)}.

In addition to the tolerance partion, system W also takes
into account the structural information about which condi-
tionals are falsified by a world, yielding the preferred struc-
ture on worlds.

Definition 2 (ξj , ξ, preferred structure<w
∆ on worlds (Komo

and Beierle 2022)). Consider a consistent belief base ∆ =
{ri = (Bi|Ai) | i ∈ {1, . . . , n}} with OP(∆) =
(∆0, . . . ,∆k). For j = 0, . . . , k, the functions ξj and ξ are
the functions mapping worlds to the set of falsified condi-
tionals from the set ∆j in the tolerance partition and from
∆, respectively, given by

ξj(ω) := {ri ∈ ∆j | ω |= AiBi}, (1)

ξ(ω) := {ri ∈ ∆ | ω |= AiBi}. (2)

The preferred structure on worlds is given by the binary re-
lation <w

∆ ⊆ Ω× Ω defined by, for any ω, ω′ ∈ Ω,

ω <w
∆ ω′ iff there exists m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m+ 1 , . . . , k}, and

ξm(ω) $ ξm(ω′) . (3)

Thus, ω <w
∆ ω′ if and only if ω falsifies strictly fewer

conditionals than ω′ in the partition with the biggest index
m where the conditionals falsified by ω and ω′ differ. Note
that <w

∆ is a strict partial order.

Example 2. The preferred structure of worlds <w
∆bird

for
∆bird given in Example 1 is shown in Figure 1.

The inductive inference operator system W is based on
<w

∆ and is defined as follows.
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Figure 2: The preferred structure on worlds induced by the
belief base ∆ from Example 3.

Definition 3 (system W, |∼w
∆(Komo and Beierle 2022)). Let

∆ be a belief base and A,B be formulas. Then B is a sys-
tem W inference from A (in the context of ∆), denoted
A |∼w

∆ B, if we have:

A |∼w
∆ B iff for every ω′ ∈ ΩAB

there is an ω ∈ ΩAB s.t. ω <w
∆ ω′

(4)

Using <w
∆bird

shown in Figure 1, we can check that
p |∼w

∆bird
w holds, i.e., that penguins usually have wings is a

system W inference in the context of ∆bird . The following
example illustrates system W in the case where the ordered
partition of ∆ is trivial.

Example 3. Consider the belief base ∆ = {(b|a), (ab|a∨b),
(c|>)} over the signature Σ = {a, b, c}. Every conditional
in ∆ is tolerated by ∆, hence OP(∆) = {∆}. The preferred
structure <w

∆ on worlds is given in Figure 2; note that <w
∆

is not a total preorder, and thus, it cannot be expressed by
system Z nor by any other ranking model of ∆.

Let us consider the question whether from ab∨ ab we can
infer ab in the context of ∆. This inference can not be ob-
tained with p-entailment and neither with system Z. How-
ever, using the preferred structure <w

∆ given in Figure 2,
it is straightforward to verify that for each world ω′ with
ω′ |= ab there is a world ω with ω |= ab such that ω <w

∆ ω′.
Thus, with system W we obtain the inference ab∨ab |∼w

∆ ab.

4 System W and Partial MaxSAT Problems
For modelling system W with Partial MaxSAT, we gener-
alize some of the notation introduced above. For a formula
F and a set of formulas M over Σ, we use the following
notations:

ω |= M iff ω |= Fi for every Fi ∈M
ΩM = {ω ∈ ΩΣ | ω |= M}

M = {F i | Fi ∈M}
F ∧M = F ∧ F1 ∧ . . . ∧ FM for M = {F1, . . . , Fm}

For a conditional (B|A), the formulaA∨B expressing its
non-f alsification is denoted by nf (B|A), and nf is extended
canonically to a set ∆ of condtionals. Thus

nf (∆) = {A ∨B | (B|A) ∈ ∆}
nf (∆) = {AB | (B|A) ∈ ∆}

are the sets of non-falsifying and falsifying formulas, re-
spectively, for the conditionals in ∆. The function ξ (Def-
inition 2) is extended to sets of worlds Ω′ ⊆ ΩΣ by defining
ξ(Ω′) = {ξ(ω′) | ω′ ∈ Ω′}. Furthermore, for a set M and a
partial order < on M , the minimal elements of N ⊆ M are
denoted by:

min(N,<) = {n ∈ N | there is no n′ ∈ N s.t. n′ < n}.
Because <w

∆ is a strict partial order, Definition 3 directly
implies that is suffices to consider only the minimal worlds
with respect the preferred structure of worlds for checking
whether |∼w

∆ holds.

Proposition 1 (|∼w
∆). Let ∆ be a belief base and A,B ∈ L.

A |∼w
∆ B iff for every ω′ ∈ min(ΩAB , <

w
∆)

there is an ω ∈ min(ΩAB , <
w
∆) s.t. ω <w

∆ ω′

(5)

For computing min-expressions as they occur in Equa-
tion (5), we will employ MaxSAT concepts (Larrosa and
Rollon 2020). Given a set of formulas S of soft constraints
and a set of formulas H of hard constraints the extended
partial maximum satisfiability problem EPMaxSAT (S,H)
is the optimization problem of maximizing the number of
satisfied formulas in S over all interpretations ω ∈ ΩH and
determining all subsets of S that are maximal with this prop-
erty.
Definition 4 (MSS (S,H), MCS (S,H)). Let S =
{S1, . . . , Ss} ⊆ L be a set of formulas, called soft con-
straints, and let H = {H1, . . . ,Hh} ⊆ L be a set of formu-
las, called hard constraints.

A set M ⊆ S such that there is an ω ∈ ΩH with ω |= M
and for every M ′ ⊆ S with M ( M ′ there is no ω′ ∈ ΩH

with ω′ |= M ′ is called a maximal satisfiable subset (MSS)
with respect to (S,H), and MSS (S,H) denotes the set of
all MSS w.r.t. (S,H).

A setN ⊆ S is called a minimal correction subset (MCS)
with respect to (S,H) if S \N is an MSS w.r.t. (S,H), and
MCS (S,H) denotes the set of all MCS w.r.t. (S,H).
Example 4. Let ∆bird and OP(∆bird) = (∆0,∆1) as in
Example 1. For S = nf (∆1) and H = {pw} we get

MSS (nf (∆1), {pw}) = MSS ({p ∨ f, p ∨ b}, {pw})
= {{p ∨ f, p ∨ b}}

and thus MCS (nf (∆1), {pw}) = {∅}.
For S = nf (∆0) and H = nf (∆1) ∪ {pw} we get

MSS (nf (∆0),nf (∆1) ∪ {pw}) =

MSS ({b ∨ f, b ∨ w}, {p ∨ f, p ∨ b, pw}) = {{b ∨ w}}

and thus MCS (nf (∆0),nf (∆1) ∪ {pw}) = {{b ∨ f}}.
In addition to using the minima as in Equation (5) for

computing |∼w
∆, we will exploit the fact that the under-

lying relation ω <w
∆ ω′ (cf. Equation (2)) can be deter-

mined by going from the the highest partition element ∆k

in OP(∆) = (∆0, . . . ,∆k) down to a lower element ∆j

only in case that ξl(ω) = ξl(ω′) for all l ∈ {j + 1, . . . , k}.
For formalizing this observation, we introduce the following
notion.



Algorithm 1 SWinf(∆, A,B)

Input: belief base ∆ and formulas A,B
Output: Yes if A |∼w

∆ B, and No otherwise
1: let OP(∆) = (∆0, . . . ,∆k)

2: function recWinf (j,H)
3: V ← MCS (nf (∆j), H ∪ {AB})
4: F ← MCS (nf (∆j), H ∪ {AB})
5: if ¬(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) then
6: return No

7: for all N ∈ V ∩ F do
8: if j = 0 then
9: return No

10: Hnew ← (nf (∆j) \N) ∪N
11: if recWinf(j − 1, H ∪Hnew ) = No then
12: return No

13: return Yes
14: end function

15: return recWinf(k, ∅)

Definition 5 (nf/f -condition for (∆, j)). Let ∆ be a belief
base with OP(∆) = (∆0, . . . ,∆k), and let j ∈ {0, . . . , k}.
A set of formulas H is a non-falsifying/falsifying condition
(nf/f -condition) for (∆, j) if there are, for i ∈ {j+1, . . . , k}
sets ∆i

nf ,∆
i
f ⊆ ∆i such that ∆i = ∆i

nf ∪ ∆i
f and ∆i

nf ∩
∆i

f = ∅, and

H =
⋃

i∈{j+1,...,k}

nf (∆i
nf ) ∪ nf (∆i

f )

Thus, given OP(∆) = (∆0, . . . ,∆k), an nf/f -condition
H for (∆, j) contains either the non-falsifying formula
A ∨ B or the falsifying formula AB for every conditional
(B|A) ∈ ∆j+1 ∪ . . . ∪ ∆k; this way the nf/f -condition H
ensures that for any two worlds ω, ω′ ∈ ΩΣ with ω |= H and
ω′ |= H we have ξl(ω) = ξl(ω′) for all l ∈ {j + 1, . . . , k}.
Note that H is an nf/f -condition for (∆, k) iff H = ∅.

In the following section, we will present an algorithm us-
ing the MaxSat concepts presented above for computing sys-
tem W inference.

5 The Algorithm SWinf
The algorithm SWinf(∆, A,B) (system W inference with
Partial MaxSAT, Algorithm 1) takes a belief base ∆ and two
formulas A,B as input and answers the question whether
A |∼w

∆ B holds.
The main part of SWinf is the recursive function recWinf

(Lines 2 – 14) taking an index j pointing to the partition
element ∆j of OP(∆) and an nf/f -condition for (∆, j) as
input. The inital call of recWinf is recWinf(k, ∅) in Line 15.

In Line 3, recWinf assigns to V the minimal correcting
subsets with respect to the set of non-falsifying formulas for
the conditionals in the partition element ∆j of OP(∆) as
soft constraints and the nf/f -condition for (∆, j) obtained
so far enlarged by the verification formula AB for the given

query as hard constarints. Analogously, in Line 4, F is set to
the minimal correcting subsets with respect to the same set
of soft constraints and the set of hard constraints obtained by
enlarging the nf/f -condition for (∆, j) by the falsification
formula AB for the given query.

If the condition in Line 5 holds, Equation (4) in the defi-
nition of |∼w

∆ is not satisfied, causing recWinf and thus also
SWinf to return No.

If V ∩ F is empty (Line 7), recWinf returns Yes. Other-
wsie, if V ∩ F is not empty, the next lower partion element
of OP(∆) has to be taken into account. If we are already
at the lowest partition element, recWinf and also SWinf re-
turns No (Line 8 –9). Otherwise, for every set N in V ∩F , a
new nf/f -condition for (∆, j−1) is constructed (Lines 10 –
11). SWinf will return Yes only if all resulting recWinf calls
return Yes, otherwise SWinf returns No.

In the following, we will illustrate the execution of SWinf
with several examples.

Example 5. With ∆bird from Example 1, executing
SWinf(∆bird , p, w) results in two succesive calls of recWinf
involving the following values and conditions, cf. Exam-
ple 4:

recWinf(j = 1, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 1 > 0
return Yes iff recWinf(0, {p ∨ f, p ∨ b}) = Yes

recWinf(j = 0, H = {p ∨ f, p ∨ b})
V = {{b ∨ f}}
F = {{b ∨ f, b ∨ w}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = ∅ → return Yes

Thus, SWinf(∆bird , p, w) returns Yes and p |∼w
∆bird

w.
When asking whetherw can be inferred from p in the context
of ∆bird with system W, SWinf(∆bird , p, w) yields No:

recWinf(j = 1, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 1 > 0
return Yes iff recWinf(0, {p ∨ f, p ∨ b}) = Yes

recWinf(j = 0, H = {p ∨ f, p ∨ b})
V = {{b ∨ f, b ∨ w}}
F = {{b ∨ f}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = false→ return No

Example 6. With ∆ from Example 3, executing
SWinf(∆, b, a) yields Yes:

recWinf(j = 1, H = ∅)
V = {∅}
F = {{ab ∨ ab}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = ∅ → return Yes



Executing SWinf(∆, c, a) triggers the condition in Line 8
and yields No:

recWinf(j = 1, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 0→ return No

Example 7. Let ∆ = {(B1|A1), . . . , (B9|A9)} be a belief
base with nine conditionals and the ordered partition:

OP(∆) = (∆0,∆1,∆2)

∆0 = {{(B1|A1), (B2|A2), (B3|A3), (B4|A4)}
∆1 = {(B5|A5), (B6|A6), (B7|A7)}
∆2 = {(B8|A8), (B9|A9)}

Query 7.1. Assume that for A,B the following holds:

ξ(min(ΩAB , <
w
∆)) = {{(B1|A1), (B5|A5)},

{(B1|A1), (B7|A7)},
{(B4|A4), (B7|A7)}}

ξ(min(ΩAB , <
w
∆)) = {{(B5|A5), (B6|A6)},

{(B1|A1), (B2|A2), (B7|A7)},
{(B3|A3), (B4|A4), (B7|A7)}}

Then executing SWinf(∆, A,B) produces the following val-
ues and conditions for the first call of recWinf:

recWinf(j = 2, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 2 > 0
return Yes iff recWinf(1, {A8 ∨B8, A9 ∨B9}) = Yes

The recursive call of recWinf yields:

recWinf(j = 1, H = {A8 ∨B8, A9 ∨B9})
V = {{A5 ∨B5}, {A7 ∨B7}}
F = {{A5 ∨B5, A6 ∨B6}, {A7 ∨B7}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {{A7 ∨B7}}
j = 1 > 0
return Yes iff recWinf(0, {A5∨B5, A6∨B6, A7B7, A8∨
B8, A9 ∨B9}) = Yes

The new recursive call of recWinf then yields:

recWinf(j = 0, H = {A5 ∨B5, A6 ∨B6, A7B7, A8 ∨
B8, A9 ∨B9})
V = {{A1 ∨B1}, {A4 ∨B4}}
F = {{A1 ∨B1, A2 ∨B2}, {A3 ∨B3, A4 ∨B4}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = ∅ → return Yes

Since V ∩F = ∅, the condition in the for-statement (Line 7)
is trivially satisfied, and recWinf and also SWinf(∆, A,B)
return Yes; thus, A |∼w

∆ B.

Query 7.2. Assume that for A′, B′ the following holds:

ξ(min(ΩA′B′ , <w
∆)) = {{(B1|A1), (B5|A5)},

{(B4|A4), (B5|A5)},
{(B1|A1), (B7|A7)},
{(B4|A4), (B7|A7)}}

ξ(min(ΩA′B′ , <
w
∆)) = {{(B1|A1), (B5|A5)},

{(B3|A3), (B4|A4), (B5|A5)},
{(B1|A1), (B2|A2), (B7|A7)},
{(B3|A3), (B4|A4), (B7|A7)}}

Then executing SWinf(∆, A′, B′) produces the following
values and conditions for the first call of recWinf:

recWinf(j = 2, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 2 > 0
return Yes iff recWinf(1, {A8 ∨B8, A9 ∨B9}) = Yes

This new call of recWinf causes two further calls of recWinf,
the first one containing the falisification for (B5|A5), the
second one containing the falisification for (B7|A7) among
its hard constraints:

recWinf(j = 1, {A8 ∨B8, A9 ∨B9})
V = {{A5 ∨B5}, {A7 ∨B7}}
F = {{A5 ∨B5}, {A7 ∨B7}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {{A5 ∨B5}, {A7 ∨B7}}
j = 1 > 0
return Yes iff
(recWinf(0, {A5B5, A6 ∨B6, A7 ∨B7, A8 ∨B8, A9 ∨
B9}) = Yes) ∧
(recWinf(0, {A5 ∨B5, A6 ∨B6, A7B7, A8 ∨B8, A9 ∨
B9}) = Yes)

The first one of these two new calls of recWinf yields No, the
second one yields Yes:

recWinf(j = 0, H = {A5B5, A6 ∨B6, A7 ∨B7, A8 ∨
B8, A9 ∨B9})
V = {{A1 ∨B1}, {A4 ∨B4}}
F = {{A1 ∨B1}, {A3 ∨B3, A4 ∨B4}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {{A1 ∨B1}}
j = 0→ return No

recWinf(j = 0, H = {A5 ∨B5, A6 ∨B6, A7B7, A8 ∨
B8, A9 ∨B9})
V = {{A1 ∨B1}, {A4 ∨B4}}
F = {{A1 ∨B1, A2 ∨B2}, {A3 ∨B3, A4 ∨B4}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = ∅ → return Yes

Because not all of the recursive calls of recWinf return Yes,
SWinf(∆, A′, B′) returns No; thus, A′ 6|∼w

∆ B′.



|∆| 6 8 10 12 14 16 18 20 30 40 50 60
|Σ| 6 8 10 12 14 16 18 20 30 40 50 60
WJ 19 204 4967 248323 timeout timeout timeout timeout timeout timeout timeout timeout

SWinf 32 42 50 57 62 69 74 82 116 151 205 226

Table 1: Evaluation comparing different implementations of system W inference, time in milliseconds. Timeout was at 30 min.

Query 7.3. Assume that for A′′, B′′ the following holds:

ξ(min(ΩA′′B′′ , <w
∆)) = {{(B5|A5), (B6|A6)}, {(B7|A7)}}

ξ(min(ΩA′′B′′ , <
w
∆)) = {{(B5|A5)}, {(B7|A7)}}

Then executing SWinf(∆, A′′, B′′) produces the following
values and conditions for the first call of recWinf:

recWinf(j = 2, H = ∅)
V = {∅}
F = {∅}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = true
V ∩ F = {∅}
j = 2 > 0
return Yes iff recWinf(1, {A8 ∨B8, A9 ∨B9}) = Yes

This new call of recWinf returns No as follows:

recWinf(j = 1, H = {A8 ∨B8, A9 ∨B9})
V = {{A5 ∨B5, A6 ∨B5}, {A7 ∨B7}}
F = {{A5 ∨B5}, {A7 ∨B7}}
(∀N ′ ∈ F ∃N ∈ V . N ⊆ N ′) = false→ return No

SWinf(∆, A′′, B′′) returns No; thus, A′′ 6|∼w
∆ B′′.

6 Implementation and Evaluation Results
We implemented the algorithm SWinf in Python und using
the MaxSAT solver Z3 (Bjørner et al. 2019). In our imple-
mentation, we used the optimizing features of the Z3 SMT
Solver to find Pareto fronts (Bjørner, Phan, and Fleckenstein
2015) (which, in our case, is equivalent to finding the sets of
all MSS) of non-falsifying formulas of the conditionals of
a partition. We then derived our sets of all MCS due to the
complementary nature of MSS and MCS.

We evaluated our implementation against an existing one
using a different approach which is implemented in Java
and creates a graph over all possible worlds to compare
verifying and falsifying worlds with respect to a query
(Beierle et al. 2022). The implementations were evaluated
with a set of belief bases of increasing sizes and corre-
sponding queries (available in the CLKR online reposi-
tory (Beierle, Haldimann, and Schwarzer 2024) at https:
//www.fernuni-hagen.de/wbs/clkr). The belief
bases ∆ and queries were generated through a randomized
process involving a signature Σ, and the size of the belief
bases |∆| was chosen to match the number of signature ele-
ments |Σ| in each example. To avoid trivial cases, only con-
sistent belief bases were taken into account. Keep in mind
that the number of worlds which potentially have to be con-
sidered increases exponentially relative to the size of the
signature. The evaluation was executed on an Intel i7-3770
CPU with 32GB DDR3-1666 working memory.

Table 1 summarizes the comparative evaluations of an-
swering system W queries. Each column represents a choice
of signature size and number of conditionals as specified
in the first two rows. The third row starting with WJ cor-
responds to the results using the Java implementation de-
scribed in (Beierle et al. 2022), and the fourth row gives the
results of our Partial MaxSAT implementation of SWinf.

The times measured are given in milliseconds and repre-
sent the mean over 1000 different queries over 100 differ-
ent belief bases of the respective sizes. The times include
preprocessing needed by the specific implementations, i.e.,
building the graph representing the preferred structure of
worlds induced by ∆ for the Java-based implementation WJ,
and computing the ordered partitioning OP(∆) of ∆ in the
case of SWinf. We set a timeout of 30 minutes (1,800,000
ms) for each query. On the very smallest belief bases (6 sig-
nature elements and 6 conditionals), the implementation WJ
outperforms our SWinf implementation. As soon as the be-
lief bases grow in size, SWinf outperforms WJ, beating it by
multiple orders of magnitude for belief bases with 12 signa-
ture elements and 12 conditionals. Additionally, the size of
the signature and the number of conditionals in a belief base,
which allow for a system W query to be answered within a
reasonable time frame, have expanded considerably. While
the WJ implementation could not answer queries for a belief
base with 14 signature elements and 14 conditionals within
30 minutes, queries for belief bases with 60 signature ele-
ments and 60 conditionals, and thus involving 260 possible
worlds, can be answered within less than one second using
our SWinf implementation.

7 Conclusions and Future Work
In this paper, we model system W concepts as Partial
MaxSAT problems and use this for developing SWinf, an
algorithm for system W inference that we implemented in
Python and that uses a current MaxSAT solver. Our evalua-
tion demonstrates that SWinf clearly outperforms previous
implementations and scales up system W inference to a new
dimension. Our future work includes further optimizing our
approach, evaluating it with respect to different MaxSAT
solvers, contrasting it to SAT/SMT based implementations
of other inference methods for conditional belief bases, e.g.,
c-inference (Beierle et al. 2018; Beierle, von Berg, and Sanin
2022; von Berg, Sanin, and Beierle 2023), and integrating it
in the InfOCF reasoning platform (Beierle, Eichhorn, and
Kutsch 2017; Kutsch and Beierle 2021).
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