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Abstract

Pipeline corrosion has significant impacts on the hu-
man, economic, and natural environment. To help better
detect and prevent it over time, in this paper, we pro-
pose a multivariate approach using machine learning.
More precisely, we propose to study the evolution of
the thickness of the mining pipeline using a multivari-
ate approach and to implement a predictive model using
the Long Short-Term Memory (LSTM) artificial neural
network. Indeed, LSTM is a specific recurrent neural
network (RNN) architecture designed to model tempo-
ral sequences. The proposed predictive model achieved
an accuracy of 80% and a loss of 0.01 and was able to
predict variations in eight thickness measurements over
one hundred days.

Introduction
For many decades, pipelines have served as the most effi-
cient and secure means of transporting materials globally.
Any breakdown in pipeline transmission systems directly
affects the economics of the material industry (El-Abbasy
et al. 2014). Over the years, researchers have delved into
studying models of these failures (Lam and Zhou 2016),
(Valor et al. 2013). The majority of inquiries into assessing
various failure modes in oil and gas pipelines indicate that
corrosion stands out as one of the most prevalent causes of
failures in transmission systems.
Pipeline corrosion leads to degradation and reduced pipeline
thickness. A high-performance model is needed to quickly
identify the risk of corrosion and effectively halt its spread,
thus restoring the pipeline’s original thickness.
(Hussein Farh et al. 2023) classified the cause of corro-
sion into three categories: 1) environmental factors; soil,
external, and stray current factors; 2) pipe factors, and
3) operational factors. They used the fuzzy analytical
hierarchy process to represent the impact of the three
factors on pipeline corrosion. They found that operational
factors had the highest relative weight (0.428), followed by
environmental factors (0.337).
(Scully et al. 2008) explained that 60% of failures in
Mexican oil and gas transportation systems are caused by
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pitting corrosion on the external walls of pipelines. This
fact of high incidents occurring due to corrosion relates to
the complexity of the environment that surrounds pipelines,
including a large variety of soil properties, water, and
transported products using the pipeline (Oil or Gas).
As a result of the advancements in machine learning
(ML) and deep learning (DL), there has been significant
interest in data-driven model-based detection methods for
pipeline erosion-corrosion monitoring. The artificial neural
network (ANN), particularly the backpropagation neural
network (BPNN), is widely employed for predicting the
erosion-corrosion rate in pipelines (Zhang, Du, and Cao
2015). (Tian, Gao, and Li 2006) adopted the ANN model
to detect the corrosion of the submarine oil pipeline under
four degrees (no, mild, moderate, serious) based on the
original input data collected by the ultrasonic sensor and
flux leakage sensor.
This paper aims to build a predictive model of the corrosion
degradation of a pipeline used to convey water in the mining
area of the Quebec metallurgy center. Work has already been
done on the same data used in this paper. (Dia, Ghazzali, and
Gambou Bosca 2022) have applied an unsupervised neural
network, self-organizing maps (SOM), to study the impact
of corrosion assessed by periodic ultrasonic inspections.
They combined SOM and hierarchical clustering to detect
the extent of corrosion in a mining pipeline. This paper
builds upon the research conducted by (Dia, Ghazzali, and
Gambou Bosca 2022) by introducing a novel approach that
incorporates multivariate analysis and LSTM.

Related Work
Long Short-Term Memory is a specific recurrent neural net-
work (RNN) architecture that was designed to model tem-
poral sequences. It was developed in 1997 by Sepp Hochre-
iter and Jürgen Schmidhuber (Hochreiter and Schmidhuber
1997) to solve the vanishing gradient problem present in tra-
ditional RNNs. Its relative insensitivity to interval length is
its advantage over other RNNs, hidden Markov models, and
other sequence learning methods. LSTM is very good at pre-
dicting in a time series (Lara-Benı́tez et al. 2020). It could
extract patterns from sequential data and store these patterns
in internal state variables. Each LSTM cell can retain im-
portant information for a longer period when it is used. This



information property allows the LSTM to perform well in
classifying, processing, or predicting complex dynamic se-
quences (Mateus et al. 2021), which makes LSTM a very
used model in the literature.

(Salman et al. 2018) applied an LSTM model to weather
variable data collected by weather underground at Hang
Nadim Indonesia. They added an intermediate variable sig-
nal on the memory block cell of LSTM and their model per-
forms better than other LSTM models with an accuracy of
0.8060 and a Root Mean Square Error (RMSE) of 0.0775.
(Nelson, Pereira, and De Oliveira 2017) used LSTM net-
works to predict future trends of stock prices based on the
price history, alongside technical analysis indicators to an
average of 55.9% accuracy when predicting if the price of
a particular stock is going to go up or not shortly. (Di Per-
sio and Honchar 2016) compares the performance of LSTM
and Multilayer Perception (MLP) to their own proposed
method based on a combination of wavelets and Convolu-
tional Neural Networks (CNN), which outperforms both but
has very close results to the LSTM network. (Karmiani et
al. 2019) compared LSTM with Support Vector Machine
(SVM), backpropagation, and Kalman filter for the stock
market for different numbers of epochs varying from 10 to
100. LSTM was found to have high accuracy and low vari-
ance. (Chen, Zhou, and Dai 2015) used an LSTM model on
the historical data of the Chinese stock market. They trained
the LSTM model on 900000 sequences and tested it using
the other 311361 sequences. Compared with the random pre-
diction method, their LSTM model improved the accuracy
of stock returns prediction from 14.3% to 27.2%. These ef-
forts demonstrated the power of LSTM in predicting China’s
dynamic and highly unpredictable stock market.
LSTM has also proven itself in the analysis and prediction of
corrosion pipelines Since the data collected in this area can
be considered as time series. (Li et al. 2022) combined a new
swarm intelligence optimization algorithm called SSA and
a LSTM model to predict the maximum pitting corrosion
depth of subsea oil pipelines. The comparison of their SSA-
LSTM method with the LSTM alone shows that the new
model SSA-LSTM performed superior in prediction accu-
racy and robustness. They used RMSE, Mean Absolute Er-
ror (MAE), Mean Squared Error (MSE) and Mean Absolute
Percent Error (MAPE) as evaluation parameters to measure
the performance of their model. The proposed hybrid model
(SSA-LSTM) obtained the best performance with the small-
est evaluation parameter values (RMSE = 0.0607 , MAE =
8.84% , MSE = 0.36%, MAPE = 9.58%).

Data processing
Data Collection
The data for this study were obtained from the Quebec
Metallurgy Centre in collaboration with Agnico Eagle Mine
Goldex. The range of data for this study was from year
2016 to year 2023. The database is composed of sixteen
process variables which are collected every five minutes and
eight pipe thickness variables which are measured using a
probe installed in the pipe and recollected within 24 hours
or more. Table 1 shows the distribution of process data as

well as their mean and standard deviation (std). The number
of registrations received for sixteen variables is 179989 and
635 for each thickness measurement. The nominal thickness
of the pipeline is between 5.5mm and 6.5mm.
In contrast to (Dia, Ghazzali, and Gambou Bosca 2022),
which aggregated the eight thicknesses by calculating their
average, in this paper, the eight thicknesses and 16 process
variables are considered to predict future measurements of
the eight thicknesses.

Area Parameter Mean Std
Alimentation Tonnage Sag 337.88 61.74

Flotation
sector

pulp flotation temperature 25.4 5.89

pH flottation 9.08 0.26

Pipeline
residue flow 431.14 113.4

% solid residue 24.98 15.7

Calculated residual TPH 156.25 132.02

Pressure Km 0 2095 737.3

Temperature Km 0 18.89 6.7

Pressure Km 14 430.36 446.66

Temperature Km 14 18.09 19.87

Thompson
River

flow rate m3/h 182.6 106.65

Temperature 11.01 6.59

Sedimentary
Basin

flow rate m3/h 70.27 15.99

Temperature 12.78 7.55

South
Park

flow rate m3/h 166.4 101.6

Temperature 7.8 6.3

Tab. 1: The process data, their mean and their standard de-
viation

Data Analysis
Figure1 shows the distribution of the eight thicknesses. The
thickness data varies between 4mm and 7mm, except for
the boxplot for thickness 1, which shows thickness mea-
surements greater than 40 and others equal to 0, indicating
that there are input errors for thickness 1. To deal with these
missing or outliers, we will replace them with a moving
average to reduce noise and maintain the trend in thickness
values.



Fig. 1: Boxplot of the Eight thicknesses

Figure 2 shows the thickness data’s evolution according
to collection dates. Dates are represented in French ( janv.
January, avr. April, juil. July, and oct. October ). After ap-
plying the various transformations, the values obtained vary
between 4mm and 7mm.

Fig. 2: The evolution of thickness measurements after the
application of the transformations

The correlation matrix (see Figure 3) shows that some
measurements are strongly correlated. It can be seen that the
% solid of the residue and the Ton Per Hour (TPH) of the
calculated residue are positively correlated with a Pearson
coefficient of 0.96 and also the Ph of the flotation and the
flow rate m3/h are negatively correlated. It is therefore
interesting to reduce the data by performing a principal
component analysis (PCA).

Fig. 3: Correlation matrix

After applying the PCA, analysis of the percentage of
variation explained shows that from the ninth dimension on-
wards, we’ve already reached more than 99% of the variance
explained (see Figure 4) so we’ll keep only nine dimensions
for the rest of the analysis.

Fig. 4: percentage of variation explained by dimension

Long short-term memory
Long Short-Term Memory (LSTM) Networks allow to learn
long-term dependencies. They are explicitly designed to
avoid the long-term dependency problem.
An LSTM network has three gates that update and control
the states of the cells: the Forget gate, the Input gate, and the
Output gate.
The Forget gate (see Figure 5) is responsible for deciding to
let information pass. State 0 corresponds to ”keep complete
information” while state 1 represents ”Totally get rid of the
information”. It is defined by the following equation:

ft = σ(Wf [ht−1, xt] + bf ) (1)

where:

• Wf represents the weight matrix associated with the For-
get gate.



• [ht−1, xt] designates the concatenation of the current en-
try and the previous hidden state.

• bf is the bias.
• σ is the sigmoid function.

Fig. 5: Forget gate (Oinkina and Hakyll 2015)

The Input gate (see Figure 6) controls what new informa-
tion will be encoded in the cell state, given the new input
information. The information is regulated using the sigmoid
function and filters the values to be retained in the same way
as the forgetting gate, using the inputs ht−1 and xt. Next,
a vector is created using the tanh function, which gives an
output from -1 to +1, containing all possible values of h t-1
and xt. Finally, the vector values and the regulated values
are multiplied to obtain useful information.

Fig. 6: Input gate (Oinkina and Hakyll 2015)

The input gate equation using the hyperbolic tangent
function (tanh) is as follows:

tanh(Wc[ht−1, xt] + bc)⊗ σ(Wi[ht−1, xt] + bi) (2)

where:

• Wc represents the weight matrix associated with the Input
gate.

• [ht−1, xt] designates the concatenation of the current en-
try and the previous hidden state.

• ⊗ is the element-by-element product.
• σ is the sigmoid function.
The Output gate (see Figure 7) controls which information
encoded in the cell state is sent to the input network at the
next time step, this is done via the output vector h(t). First, a
vector is generated by applying the tanh function to the cell.
Next, the information is regulated using the sigmoid func-
tion and filtered by the values to be retained using the inputs
ht−1 and xt. Finally, the vector values and the regulated val-
ues are multiplied and sent as output and input to the next
cell. The output gate equation is as follows:

ht = ot ⊗ tanh(ct) where ot = σ(Wo[ht−1, xt] + bo) (3)

where:

• Wo represents the weight matrix associated with the Out-
put gate.

• [ht−1, xt] designates the concatenation of the current en-
try and the previous hidden state.

• bo is the bias associated with the Output gate.
• ⊗ is the element-by-element product.
• σ is the sigmoid function.

Fig. 7: Output gate (Oinkina and Hakyll 2015)

Results and Discuss
Model evaluation
Figure 8 shows the evolution of the loss function of the
LSTM model over time. The decrease in the loss function
proves that the LSTM model used has minimized the pre-
diction errors during training. The performance of the model
can also be measured by its accuracy.



Fig. 8: Training Loss

During training, the model used achieved an accuracy
score of 80%, which means that 80% of the values predicted
by the model are correct (Figure 9).

Fig. 9: Training Accuracy

Table 2 shows that using the PCA on the dataset increases
the model’s performance, with accuracy rising from 76% to
80 % and Loss decreasing to 0.100. This is because the PCA
eliminates redundancies between variables.

Model Accuracy(%) Loss
LSTM 76 0.132

PCA + LSTM 80 0.100

Tab. 2: Comparison of LSTM and PCA+LSTM perfor-
mance

Model predictions
Once the model has been trained, we will test it on the test
data. To do this, we will predict the evolution of the thick-
nesses over the next 100 days. Figure 10 shows the evolution
of the pipeline thickness 1, 2, 3, 5, and 6 predicted by the
LSTM model for the next hundred days.
The thickness values of pipelines 1 and 6 are below the nom-
inal thickness value (between 5.5 and 6.5) before the 40 days
which means that the corresponding pipeline is affected by
corrosion and should be monitored. And after 40 days, there
is an increase in the thickness measurements of pipelines 1
and 6 which means that both pipelines (1 and 6) should be
treated. The evolution curve of the thickness measurements
predicted by the LSTM model of the pipelines (2, 3, and

5) shows an almost constant variation between 5.4mm and
5.6mm, which is just over the minimum thickness of 5.5mm.
This suggests that regular inspections should be carried out
over the next 100 days.

Fig. 10: Pipe thickness 1, 2, 3, 5 and 6 predicted by the
model

The thickness measurements predicted by the model for
pipelines 4 and 7 are above the nominal thickness (5mm),
which means that pipelines 4 and 7 are already corroded,
since the LSTM is monitoring the evolution of past measure-
ments, the corresponding pipelines will have to be replaced
or treated. (see Figure11)

Fig. 11: Pipeline thickness 4 and 7 predicted by the model

The evolution of the thickness 8 curve predicted by the
model shows a rapid fall in thickness 8 up to the 40th day,
which means that there is a risk of loss of thickness due to
the corresponding corrosion of the pipe. Even if the mea-
surements of the thickness of the corresponding pipeline are
between the nominal thicknesses, it must be treated before
the 40 days to avoid the increase in corrosion which will cor-
respond to the increase in the measurement of the thickness
of pipeline 8.



Fig. 12: Pipeline thickness 8 predicted by the model

Conclusion
Pipeline failure has attracted the attention of many research
communities because of its significant impact on the global
economy, leaks, explosions, and costly downtime. Many ef-
forts to build corrosion prediction models have been pro-
posed resulting in a vast number of publications available in
the literature. However, the nature of corrosion pipeline is so
complex that difficult to formulate in a single mathematical
model.
In this paper, an LSTM model was used to predict the evolu-
tion and measurement of the thicknesses of an ore transport
pipeline. The model developed was able to predict the evo-
lution of different pipeline thickness values.
Future work will focus on the received data and combine
other time series processing models with the LSTM.
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