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Abstract

The electroencephalogram (EEG) is a practical and reason-
ably applied tool for researching brain disorders and behavior
changes. EEG offers a minimally restricted and non-invasive
method, where the significant difficulties in utilizing EEG in
studies on cognitive development are in the temporal reso-
lution, the outbound signal sources, and the EEG Artifacts.
Automated IC category classification of ICs can be achieved
sufficiently accurately, which expedites the analysis of large-
scale EEG research and permits the use of ICA decompo-
sition in near-real-time applications. Thus, this work presents
an automated convolution neural network-based brain activity
labeling for ICA rejection using the data from the well-used
and widely utilized by neurologists and Scientists such as
ICLabel MATLAB, EEGLab tools, etc. Replacing the man-
ual task via an atoms system, which makes the proposed
system reduces the processing time by 7200× and accuracy
of 89.45%. The proposed system was trained, verified, and
tested using CCHMC clinical data, using a 128-channel Hy-
droCel electrode net (Magstim EGI, Eugene, OR) and an EGI
NetAmp 400 at a 1000Hz sampling rate.

Introduction
Electroencephalography (EEG) remains a fundamental tool
for studying brain activity, capturing the electrical sig-
nals generated by neuronal populations [Khoshnevis and
Sankar2019]. Independent Component Analysis (ICA) has
proven effective in separating mixed signals into indepen-
dent components, revealing distinct neural sources. In this
paper, we present a novel technique that leverages graphi-
cal representations derived from EEG-ICA to label specific
brain activities, enhancing the interpretation ability and util-
ity of EEG data, shown in Fig. 1.

EEG monitors the electrical potential between two elec-
trodes on the scalp, with evidence indicating the origin of
this electrical signal [Pizzagalli et al.2007]. The EEG signal
is context-dependent but spontaneous; the EEG produced
during calm rest differs quantitatively from the EEG pro-
duced during cognitive functioning. The temporal resolution
of the EEG signal is milliseconds. Postsynaptic alterations
are instantly reflected in the EEG, which makes this technol-
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ogy exceptional for monitoring sudden changes in brain ac-
tivity [Lukatch and MacIver1996]. The robustness of elec-
trical signals recorded at the scalp and the ease of use and
non-invasive nature of the techniques used to obtain them
make them valuable for research with younger people. On
the other hand, getting high-quality signals usually takes a
lot of training.

Figure 1: A portion of an EEG recording of ISO (10-20) with
(5) dominant ICA Components.

The literature currently has several techniques for remov-
ing EEG artifacts, and earlier research has focused chiefly
on the manual or automatic identification of one or more
different kinds of EEG artifacts. Independent Component
Analysis (ICA) based techniques are frequently utilized in
conjunction with other suggested ways to identify the arti-
facts [Naik and Kumar2011] effectively.

To obtain useful information from complicated neural sig-
nals and progress both basic and clinical neuroscience re-
search, IC labeling of EEG recordings is essential for better
knowledge of how the brain functions. IC labeling of EEG
recordings holds significant importance in nonscientific re-
search and clinical applications, especially for source sep-
aration, spatial localization, artifact removal, and cognitive
function mapping. The mean labor time for a neurologist to
perform such a talk using Matlab toolkit (30 ± 10 minutes)
the large diversity is due to the nature of the visual analysis
process and the human factor.

We proposed a novel automated convolution neural net-
work (CNN) model and tool for brain activity labeling using



Figure 2: The EGI HydroCel Geodesic Sensor Net 128-
Channel Map’s layout for the total brain average of EEG
biomarkers shows 108 chosen electrodes, with a heatmap
showing the EEG nodes.

visual representation output for the most popular and cur-
rently applied Matlab tool (such as ICLable) that neurolo-
gists and neuron scientists can use to expedite the analy-
ses and save labor time and efforts for medical personnel.
The proposed system was trained, tested, and verified using
CCHMC Data sets where all EEGs were blinded and coded
regarding participant, diagnosis group, and collection date.

EEG Heatmap
Brain activity can be inferred from EEG topographic maps.
The utilization of brain mapping allows for the visualization
of the brain’s interconnection and functionality [Hooi, Nisar,
and Voon2015]. The determination of a functionally inte-
grated relationship between geographically dispersed brain
regions is aided by brain functional connectivity [Pedapati
and Schmitt2023] [Györfi2022] and [Mammone et al.2018].
The detailed components of the topographical representation
is shown in Fig. 2

Proposed Architecture Method
The proposed architecture is a novel method of automated
rejection of the EEG ICA analysis of the medical personnel,
and neurology scientists used to perform manually, and it
then takes approximately 30 minutes per patient per record-
ing. The proposed architecture is a system that can be tapped
into an established ICA rejection pipeline process without
disturbing or altering the clinical setup or the devices in-
volved; the architecture is shown in Fig. 3 The architecture
is based on a CNN-based model using the EEG topographic
heatmap output report images.

The power spectral density of each segment channel was
calculated using the Welsh method, employing a Hamming
window. The power within the six frequency bands was cal-
culated as follows: 0.1–4 Hz (delta, δ), 4–8 Hz (theta, θ),
8–14 Hz (alpha, α), 14–30 Hz (beta, β), 30–47 Hz (low
gamma, γ1), and 47–64 Hz (high gamma, γ2)

The architecture is based on a CNN-based model using
the EEG topographic heatmap output report images. The
power spectral density of each segment channel was calcu-
lated using the Welsh method, employing a Hamming win-
dow. The ultimate aim of this study is to reduce the complex-
ity and power consumption of the proposed system for future
hardware implementation prospectus. Thus, within the N.N
design, we have three activation functions: ReLU, Leaky
ReLU, and Binary Step functions.

Figure 3: The proposed architecture process diagram

Table 1: Test subjects age statistcal data

Age
Min 1st Que Median Mean 3rd Que Max
6.25 11.96 14.58 19.90 25.58 44.58

The clinical trials and data collection was done at Cincin-
nati Children’s Hospital Medical Center (CCHMC); the data
was transformed into datasets for training, verifying, and
testing the CNN model using a 128-channel HydroCel elec-
trode net (Magstim EGI, Eugene, OR) and an EGI NetAmp
400 at a 1000Hz sampling rate. Resulting in 5000 IC compo-
nent interface dash images, extracted to heatmap 250× 250
images. The clinical data was collected from nine (9) fe-
males and fifty (50) males; the age information and the di-
agnosis of the human subjects are listed in Table 1. The ML
model was constructed with four (4) convolution blocks with
initial batch normalization ads scaling layers, padded with a
flattening and two (2) dense layers at the end. Due to space
limitations, we couldn’t demonstrate the graphic representa-
tion, but it is available for public use on our GitHub page.

Results Discussion
The proposed architecture was implemented and simulated
using TensorFlow and Keras libraries on an Intel Core i9
CPU @ 2.40GHz, with NVIDIA GeForce RTX 2080S GPU.
The model used 1,066,863 trainable parameters and six non-
trainable parameters.

The worst-case scenario for the accuracy of perdition is
82.36%, and the mean accuracy is 89.45%. With an average
time of execution, the ICs rejection task saved the neurolo-
gist time by 7200×.

Conclusion
This research explores the use of ML to classify IC-tagged
EEG Images. The proposed method utilizes the spatial sensi-
tivity of CNNs to extract features from intricate neural repre-
sentations, offering an effective tool for identifying patterns
linked to various cognitive states.
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