Using Earley Parser for Verification of Totally Ordered Hierarchical Plans

Kristyna Pantuckova, Simona Ondrcékova, Roman Bartak
Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic
{pantuckova, ondrckova, bartak } @ktiml.mff.cuni.cz

Abstract

Hierarchical planning extends classical planning by
capturing the hierarchical structure of tasks via decom-
position of tasks to subtasks. Hierarchical plan verifi-
cation is the problem of determining whether a given
plan is valid according to that structure. As decompo-
sition trees in totally ordered hierarchical planning do-
mains resemble parsing trees of context-free grammars,
one may exploit the techniques for context-free gram-
mars also for hierarchical plans. In this paper, we study
how the Earley parser, proposed for checking whether
a given word belongs to a language defined by context-
free grammar, can be extended to verification of totally
ordered hierarchical plans.

Introduction

Hierarchical planning (Erol, Hendler, and Nau 1996) ex-
tends classical planning by a task hierarchy describing how
tasks decompose to subtasks until primitive tasks — actions
— are obtained. A hierarchical planning domain model de-
fines possible task decompositions via decomposition rules.
The planning problem is given by a goal task and an ini-
tial state and the problem is to find the decomposition of the
goal tasks into a sequence of actions executable in the initial
state. The plan verification problem is somehow reverse to
the planning problem — the input consists of an action se-
quence and an initial state, and the verification problem is to
check that the action sequence is a valid hierarchical plan,
that is, it can be obtained by decomposition of some goal
task and it is executable in the initial state. The goal task
may or may not be given as input.

Plan verification is not just an academic problem, it can
be used, for example, to verify plans in planning competi-
tions, and it has various practical applications. For example,
users need to check that a given action sequence complies
with the rules describing the task, which the action sequence
solves (in medical surgeries, manufacturing processes, han-
dling customers, etc.).

Verifying, that an action sequence is executable in a
given state, is straightforward — a well known system VAL
is used there for a long time (Howey and Long 2003).

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

The focus of this paper is on verifying hierarchical plans,
in particular reconstructing the decomposition structure,
which is a much harder problem. The first hierarchical
plan verification approach was based on compilation to
Boolean satisfiability problem (Behnke, Holler, and Biundo
2017). Then approaches based on parsing became more
widespread (Bartak, Maillard, and Cardoso 2018; Lin et al.
2023; Ondrckova et al. 2023) and also compilation of hierar-
chical plan verification problem to hierarchical planning has
been suggested (Holler et al. 2022). Existing parsing-based
approaches to hierarchical plan verification use a bottom-up
approach; they start with the action sequence and build a de-
composition tree towards the goal task. The planning-based
approach uses a top-down method, going from the goal task
towards the plan, and may exploit various planning heuris-
tics. Using heuristics seems more complicated for bottom-up
approaches (Ondrckova et al. 2022).

In this paper, we present another parsing-based approach
to hierarchical plan verification, which is based on the Earley
parser (Earley 1970). The Earley parser was originally pro-
posed for context-free grammars; therefore, our approach is
limited to verification of totally ordered plans. In totally or-
dered planning domains, every decomposition rule decom-
poses a task into a totally ordered sequence of subtasks. Nev-
ertheless, many planning domains can be naturally defined
as totally ordered domains. In the International Planning
Competition (IPC) 2020, 24 of 33 planning domains were
totally ordered. Earley parser has been already used for hi-
erarchical plan recognition, where it outperformed the exist-
ing parsing-based approach (Panttickova and Bartdk 2023).
Moreover, the Earley parser is based on top-down parsing,
progressing from possible goal tasks downwards to the ac-
tions from the input plan, which could simplify introduction
of planning heuristics to it.

The paper is organized as follows: Firstly, we provide
background on hierarchical plan verification. Secondly, we
describe the related work. Then, we describe our approach to
plan verification. Finally, we present the results of empirical
comparison of our approach and other state of the art hier-
archical plan verifiers. We also compare the performance of
the Earley parser on grounded and lifted problems, showing
that grounding improves the performance of verification of
longer plans. The grounded Earley parser shows a perfor-
mance comparable to the other parsing-based approaches.

Background on hierarchical plan verification

Hierarchical planning domains define two types of tasks:
abstract (compound) tasks, which decompose into simpler
tasks, and primitive tasks — actions. Similarly to classi-
cal planning, actions are defined by preconditions (atomic
propositions that must be true before the action is executed)
and effects (atomic propositions that will become true or
false after the action is executed). Possible task decompo-
sitions are defined by decomposition rules. A rule 7' —
Ty, ..., T, [C] describes decomposition of task T into sub-
tasks 711, ..., T},, where C'is a set of rule constraints.

Hierarchical planning domains are often based on the for-
malism of hierarchical task networks (HTN), which define
three types of rule constraints:

* before-constraints: before(T',p), s.t. T' C {T1,...., T}
and the action sequence into which the tasks in 7" decom-
pose starts with the action a, indicates that the proposition
p must hold in the state where a is executed;

* between-constraints: between(T',T" p), st. T, T" C
{T1,...,T,,} and the sequence into which the tasks in 7"
decompose ends with the action a and 7" decomposes
into a sequence of actions starting with b, indicates that p
must hold in all states between the execution of ¢ and b;

* ordering-constraints: T; < T, where the task T; decom-
poses into a sequence of actions ending with a and T}
decomposes into a sequence of actions starting with b, en-
forces that ¢ must be executed before b.

In totally ordered hierarchical planning, the subtasks in each
rule are totally ordered, i.e., T; < T} for all i < j.

Figure 1 shows an example of task decomposition in a
classical planning domain Blocksworld, where towers of
blocks are being constructed. Let a, b and ¢ be three blocks.
Our goal is to put the block b on the block a. As there al-
ready is another block (c) on the block a, we firstly need
to remove the blocks above the block a. Therefore, the root
task put_on(b,a) decomposes into two tasks: the abstract task
clear(a) and the action stack(b,a). The task clear(a) decom-
poses into the action unstack(c,a). The resulting plan is a
sequence of two actions: unstack(c,a), stack(b,a).

As an input of an HTN plan verification problem, a veri-
fier receives the plan unstack(c,a), stack(b,a), the description
of the planning domain and possibly the goal task put_on(b,
a). The purpose of the verifier is to decide whether the given
goal task decomposes into the given plan (or whether there
is any goal task that decomposes into the plan).

ol

Figure 1: Example of a hierarchical task decomposition.

put_on(b, a)

clear(a) stack(b, a)

unstack(c, a)

Related works

The first approach to solve hierarchical plan verification
problems was based on encoding the problem into a Boolean
satisfiability problem (Behnke, Holler, and Biundo 2017).
This encoding does not support before and between con-
straints and it is outperformed by recent techniques.

Another compilation-based approach encodes the verifi-
cation problem as a planning problem (Holler et al. 2022).
The authors present an encoding, which translates a plan ver-
ification into a hierarchical planning problem, which is then
solved by an HTN planner. If a planner finds a plan for the
new planning problem, the original plan is valid.

The first approach that supports all types of rule con-
straints and also partial order of tasks (task interleaving) was
based on parsing (Bartdk, Maillard, and Cardoso 2018). This
idea motivated other parsing-based techniques with signif-
icantly better performance (Bartdk et al. 2020). The well-
known Cocke—Younger—Kasami algorithm (CYK), origi-
nally proposed for parsing of context-free grammars, has
been modified to hierarchical plan verification (Lin et al.
2023). As an input, this approach requires a grounded prob-
lem (task attributes are substituted by constants representing
objects from the problem) with a 2-regulated domain model
(each task decomposes either to an action or to two subtasks,
similarly to Chomsky Normal Form). It demonstrates the
benefits of grounding and it was shown to be faster on totally
ordered domains than (Ondrckova et al. 2023) and (Holler et
al. 2022). However, similarly to our approach, this approach
does not support partially ordered domains.

The CYK-based approach inspired modification of exist-
ing parsing-based approach by pre-processing (Ondrckova
et al. 2023). The authors showed that even greedy bottom-
up parsing benefits from grounding with 2-regularisation.
Bottom-up parsing was slower than the CYK-inspired algo-
rithm on totally ordered domains; however, it supports also
partially ordered domains.

Recently, the Earley parser has been suggested for hi-
erarchical plan recognition (Pantickova and Bartak 2023),
where it outperformed a bottom-up parsing approach and its
performance was comparable to the compilation-based ap-
proach. This motivated us to apply the Earley parser also to
hierarchical plan verification problem.

HTN plan verification by Earley parser

As an input of a plan verification problem, we expect a plan
(a sequence of actions), a planning domain model (decom-
position rules) and a description of a planning problem (ini-
tial state and possibly the goal task). We do not require the
goal task to be given as part of the input. If the goal task
is not known, we start with a dummy goal (root) task and
for each abstract task from the domain model, we add to the
domain model a new dummy rule decomposing the dummy
goal into the abstract task.

The Earley parser is a parser for context-free grammars.
A context-free grammar (CFG) is a grammar, where all rules
can be written as A — «, where A is a non-terminal sym-
bol and « is a string of terminal and non-terminal symbols.
Omitting rule constraints in a totally ordered HTN planning

domain model results in a context-free grammar with rewrit-
ing rules of the form T" — T, ..., T},, where T' is an abstract
task and 71, ..., T, is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration ¢, the parser
finds decompositions for the prefix of length <. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems

On a grounded plan verification problem we can use the
Earley parser algorithm directly — as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs — all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Bartdk, Maillard,
and Cardoso 2020).

Earley parser on lifted problems

Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task GG by using uninstantiated dummy rules G — o713,
for each possible goal task 7;. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.
The predictor processes the state

T, — Til...Ti]._l o n]ﬂ

n?

which represents a rule decomposing the task 7; into the
subtasks Tj, , ..., T;,,, where the tasks before @ have already
been processed and the next subtask to be processed is the
abstract task 77, . The predictor creates a new state

Tj — .le LT

Jm>

for each decomposition rule of T); and it propagates the at-

tributes from tasks T;, T;, , ..., T;;_, to this new state T; —
.le ...ij .
The scanner processes the state
T — T%l ...T%j71 o TijT’ij+1 ~-~Tina

where T;, is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state
T T T aeTl .T
J

1 Gj41° in?
where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.
The completer processes the state
T — 711'1 LT e

n o)

using the completed decomposition to decompose the next
task (the task right after e) in all states, where the next task
T}, is of the same type as T; and with a compatible instanti-
ation. For each such state

Tj — 1}1 ° ﬂij

m?

the completer creates a new state
! / / /
T, = 15,15, 0.1},

with the instantiation resulting from merging the instantia-
tions of T}, T}, , ..., T}, and T;.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example

We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting — lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with e separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[T = T;,..T;,_, o Ti,..T;, ;s ql,

where p is the index of the first and ¢ is the index of the
last action covered by this state, i.e., the tasks T, , ..., T, _,
decompose into the actions ay, ..., a4 from the plan.

As the goal task is not given as part of the input, the algo-
rithm starts by generating a dummy starting state

[G — oT;0;0]
for each uninstantiated abstract task 7" from the domain, e.g.:
[G — eput_on(?,7);0;0],[G — eclear(?);0;0].

Iteration 0: Predictor expands all starting states by ap-
plying all available decomposition rules to the first unpro-
cessed subtask. One of the new states will be the following
state:

[put_on(?,7) — eclear(?)stack(?,7);0;0].
Then, it will expand also the newly generated states:
[clear(?) — eunstack(?,7?);0;0].

As unstack(?,?) is an action, the last state will be pro-
cessed by scanner, which will read the first action and create
a corresponding instantiated state:

[clear(a) — unstack(c,a)e; 1;1],

which covers the action at the position 1. The new state will
be processed in iteration 1 along with other generated states
with the end index 1.

Iteration 1: The previous state will be processed by
completer, which will use it to decompose the first subtask
in the state [put_on(?,?) — eclear(?)stack(?,7);0;0] as
clear(?) is compatible with the instantiation clear(a) and
the end index (0) precedes the index 1. As a result, it will
create the following state:

[put_on(?,a) — clear(a) o stack(?, a);0; 1].

As stack(?,a) is an action, this state will be processed by
scanner, which will read the second action from the plan,
thus creating the following state:

[put_on(b,a) — clear(a)stack(b, a)e;0;2].

Iteration 2: The states with the end index equal to 2 will
be processed, along with the previous state, which will be
used by completer to complete one of the dummy starting
states, creating the corresponding state:

[G — put_on(b,a)e;0;2].

As the leaves of the decomposition AND/OR tree of this
state contain all actions, this state represents a candidate goal
task.

As we remember which rule was used to decompose each
subtask of each state (e.g., clear(a) — unstack(c,a) was
used to decompose the first subtask of put_on(b,a) —
clear(a)stack(b,a)), we may now attempt to extract a so-
lution from the AND/OR tree of the candidate goal. We tra-
verse the tree using the post-order depth-first search, firstly
visiting the root task put_on(b, a). The decomposition rule
that decomposes this task into clear(a) and stack(b, a) can

be used only if all subtasks can be decomposed. Hence, we
have to firstly visit the task clear(a). We will now verify
that clear(a) can be decomposed into unstack(c,a), i.e.,
that no constraint of the decomposition rule is violated and
all preconditions of the action unstack(c, a) are satisfied in
the initial state (since it is the first action in the plan), e.g.,
that the block c is on the block a and no block is on the block
c. If the decomposition is verified, we return back to the task
put_on(b,a) and verify that it can be decomposed into the
abstract task clear(a) and the action stack(b,a). For ex-
ample, we have to verify that the preconditions of the ac-
tion stack(b, a) are satisfied in the state after the first action
unstack(c, a) is executed, i.e., no block is on the block b
and no block is on the block a. If this decomposition is valid,
the root task is the goal that decomposes into the given plan;
therefore, the plan is valid. If no such goal can be found, the
plan is invalid.

The grounded parsing progresses in a similar manner. In-
stead of using uninstantiated or instantiated rules, we se-
lect rules with the required variables. If the goal is given
as part of the input, we create only one dummy starting state
[G — oT';0; 0] for the given goal task T'.

Empirical evaluation

We have compared the performance of the Earley verifier
with three state of the art hierarchical plan verifiers: the
compilation-based approach (Holler et al. 2022), the bottom-
up parsing-based approach (Ondrckova et al. 2023), and the
CYK-based approach (Lin et al. 2023). We have compared
the performance of the Earley parser on grounded and lifted
domains. All three existing approaches and the grounded
Earley parser use the grounder from (Behnke et al. 2020).

As benchmarks, we have used three totally ordered do-
mains from IPC 2020: Satellite, Transport and Blocksworld.
As valid plans, we have used the valid plans from IPC 2020.
We have used 45 valid plans of length 5 - 28 from the do-
main Satellite, 50 plans of length 8 - 225 from the domain
Transport and 28 plans of length 22 - 357 from the do-
main Blocksworld and the same number of invalid plans that
were created by deleting trailing actions from valid plans.
The benchmarks used for experiments will be accessible on-
line after the paper is accepted. All experiments were per-
formed on a computer with the Intel Core i7-8550U CPU @
1.80GHz processor and 16 GB of RAM. Maximum allowed
runtime was set to five minutes for one problem.

Figures 2, 3, 4, 5, 6 and 7 show the results. We have
compared how the number of problems solved by each ver-
ifier increases with runtime separately for valid and invalid
plans from each domain. In each figure, Earley denotes the
lifted Earley parser, CYK denotes the CYK-based approach
(Lin et al. 2023), compilation denotes the compilation-based
approach (Holler et al. 2022), BFS denotes the bottom-
up parsing-based approach (Ondrckova et al. 2023), and
grounded Earley denotes the grounded Earley parser.

Generally, the grounded Earley parser was usually slightly
slower than both bottom-up parsing-based approaches; how-
ever, the differences of runtimes were usually counted only
in hundreds of milliseconds. The compilation-based ap-
proach was faster on invalid plans, but slower than all three

Satellite - valid

w A~ u
o O o

number of solved problems
N
o

10
0
0,1 1
[seconds]
runtime
......... Earley — - -CYK — — compilation
- = =BFS grounded Earley

Figure 2: The number of problems with valid plans solved
within given time (log x-axis) in the domain Satellite.

Transport - valid

o))
o o

o

=N W A U
o O o o

number of solved problems

0,1

[seconds]

runtime

— - =CYK — — compilation

grounded Earley

Figure 3: The number of problems with valid plans solved
within given time (log x-axis) in the domain Transport.

Blocksworld - valid

» 30

55 -

= ~

© 20

o

315

=

S 10

ST T &t = s

@

2 0

[S

3 0,1 100

[seconds]
runtime

......... Earley — - =CYK — — compilation
- — =BFS grounded Earley

Figure 4: The number of problems with valid plans solved
within given time (log x-axis) in the domain Blocksworld.

grounded parsing-based approaches on longer valid plans
from the domains Transport and Blocksworld.

The lifted Earley parser was significantly slower than all
of the other verifiers on longer both valid and invalid plans

Satellite - invalid

. 50

£ A

2 40 a

3 =7

& 30 £

el

220 / !

3 /o

% 10 /

2 0 / <

§ 0,1 1

[seconds]
runtime

......... Earley — - -CYK — — compilation
- = =BFS grounded Earley

Figure 5: The number of problems with invalid plans solved
within given time (log x-axis) in the domain Satellite.

Transport - invalid

a
o

BN W AU
o O o o o o

number of solved problems

[seconds]

runtime

— + =CYK — — compilation

grounded Earley

Figure 6: The number of problems with invalid plans solved
within given time (log x-axis) in the domain Transport.

Blocksworld - invalid

., 30

E 25

Q

20

o

B 15

=

S 10

“6 5 e L

g D 2 (TS

-g 0

i v ' 10 100

[seconds]
runtime

......... Earley — . =CYK — — compilation
- = =BFS grounded Earley

Figure 7: The number of problems with invalid plans solved
within given time (log x-axis) in the domain Blocksworld.

(see Figures 3, 4, 6 and 7). In the domain Blocksworld (Fig-
ures 4 and 7), the lifted Earley parser even failed to solve
most of the problems within the maximum allowed runtime.

However, the lifted Earley parser was faster on shorter

plans. In the domain Satellite, it solved most of the prob-
lems faster than all other verifiers (see Figures 2 and 5); the
difference is bigger for invalid plans (Figure 5). In this do-
main, consisting of the shortest plans, the grounding results
in an unnecessary overhead. A similar observation can be
made also in the domain Transport (Figures 3 and 6). For
both valid and invalid plans, the lifted verifier solved more
than half of the problems faster than the other verifiers, but
when it was faced with more difficult problems with longer
plans, its performance decreased. On longer plans from the
domain Transport and on the domain Blocksworld, consist-
ing of the most difficult problems, grounding seems to prune
the space of intermediate solutions, which results in a signif-
icant increase of performance of plan verification.

Though the Earley parser did not show a better perfor-
mance than the existing parsing-based approaches to plan
verification, the fact that its performance was comparable
opens directions for future research. The Earley parser is
based on top-down parsing, while the other approaches are
based on bottom-up parsing. As the Earley parser parses the
input from the top downwards, progressing from abstract
tasks to actions via decomposition rules in a similar man-
ner as HTN planning, a question arises whether the perfor-
mance of verification could be improved by HTN planning
heuristics, which can hardly be implemented in bottom-up
parsing. Implementation of planning heuristics into parsing-
based plan verification could be interesting especially since
parsing-based approaches seem to perform better than com-
pilation when applied to plan verification.

Conclusion

We have presented a top-down parsing approach to hier-
archical plan verification based on the Earley parser — a
parser originally proposed for context-free grammars. We
have evaluated the effect of grounding on the performance
of our approach and we have shown that grounding signifi-
cantly improves its performance on more difficult problems.
We have shown that the performance of our top-down pars-
ing approach is comparable to the performance of the ex-
isting bottom-up parsing approaches. This result suggests
to explore the possible implementation of hierarchical plan-
ning approaches into parsing-based hierarchical plan verifi-
cation. Since top-down parsing resembles hierarchical plan-
ning, planning heuristics can be implemented more naturally
than in bottom-up parsing.

Acknowledgments

Research is supported by the Charles University, project GA
UK number 156121, by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under
GA No 952215 and by SVV project number 260 698.

References

Bartak, R.; Ondrckova, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A novel parsing-based approach for
verification of hierarchical plans. In 32nd IEEE Interna-
tional Conference on Tools with Artificial Intelligence, IC-

TAI 2020, Baltimore, MD, USA, November 9-11, 2020, 118—
125. IEEE.

Bartdk, R.; Maillard, A.; and Cardoso, R. C. 2018. Valida-
tion of hierarchical plans via parsing of attribute grammars.
In de Weerdt, M.; Koenig, S.; Réger, G.; and Spaan, M. T. J.,
eds., Proceedings of the Twenty-Eighth International Con-
ference on Automated Planning and Scheduling, ICAPS, 11—
19. AAAI Press.

Bartdk, R.; Maillard, A.; and Cardoso, R. C. 2020. Parsing-
based approaches for verification and recognition of hierar-
chical plans. In The AAAI 2020 Workshop on Plan, Activity,
and Intent Recognition.

Behnke, G.; Holler, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of htn planning problems.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 9775-9784.

Behnke, G.; Holler, D.; and Biundo, S. 2017. This is a solu-
tion!(... but is it though?)-verifying solutions of hierarchical
planning problems. In Proceedings of the International Con-

ference on Automated Planning and Scheduling, volume 27,
20-28.

Earley, J. 1970. An efficient context-free parsing algorithm.
Communications of the ACM 13(2):94—-102.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics and Al
18(1):69-93.

Holler, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling htn plan verification problems into htn planning
problems. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 32, 145—
150.

Howey, R., and Long, D. 2003. Val’s progress: The
automatic validation tool for pddl2.1 used in the interna-
tional planning competition. In Proceedings of the ICAPS
2003 workshop on ”"The Competition: Impact, Organization,
Evaluation, Benchmarks”, 28-37.

Lin, S.; Behnke, G.; Ondrckova, S.; Bartdk, R.; and Bercher,
P. 2023. On total-order htn plan verification with method
preconditions—an extension of the cyk parsing algorithm. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, 12041-12048.

Ondrckova, S.; Bartak, R.; Bercher, P.; and Behnke, G. 2022.
On heuristics for parsing-based verification of hierarchical
plans with a goal task. In Bartak, R.; Keshtkar, F.; and
Franklin, M., eds., Proceedings of the Thirty-Fifth Interna-
tional Florida Artificial Intelligence Research Society Con-
ference, FLAIRS 2022, Hutchinson Island, Jensen Beach,
Florida, USA, May 15-18, 2022.

Ondrckova, S.; Bartak, R.; Bercher, P.; and Behnke, G.
2023. Lessons learned from the cyk algorithm for parsing-
based verification of hierarchical plans. In The International
FLAIRS Conference Proceedings, volume 36.

Pantickovd, K., and Bartédk, R. 2023. Using earley parser for
recognizing totally ordered hierarchical plans. In Proceed-
ings of 26th European Conference on Artificial Intelligence
(ECAI) 2023.10S Press. 1819-1826.

