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Abstract

Hierarchical planning is a form of planning where tasks
decompose into sub-tasks until primitive tasks (actions)
are obtained. These decompositions might contain ad-
ditional constraints, such as subtask ordering and state
constraints. If a task is already fulfilled, it does not need
to decompose into anything, but it may still require sat-
isfaction of a particular state constraint (to check that
the task is fulfilled). Such decomposition methods are
called empty. Despite practical usefulness, many hierar-
chical planning models do not support empty methods
fully. This paper shows that two recently introduced hi-
erarchical planning formalisms are equivalent with re-
spect to empty methods. We also discuss the possibility
of compiling such methods away. In particular, we show
how to compile them away in totally ordered domains
and discuss the difficulties in partially ordered domains.

Introduction
Planning is a technique that selects and organises actions
into a sequence – a plan – to achieve a specific goal. In clas-
sical planning, this goal is described in a form of conditions
that must be true after the sequence is finished. Each action
may have effects that affect the state of the world and pre-
conditions that must be true in order for the action to be ex-
ecutable. Hierarchical planning provides additional guide-
lines how to achieve particular tasks through decomposition
into subtasks until actions are obtained (Ghallab, Nau, and
Traverso 2004). Each of these decompositions might have
additional constraints. A goal is typically described in the
form of a goal (root) task that the planner must decompose.

Hierarchical planning has a variety of uses for example
in automated assistance (Bercher et al. 2021), planning for
spacecraft (Estlin, Chien, and Wang 1997) or machine learn-
ing (Mohr, Wever, and Hüllermeier 2018). Hierarchical plan
verification is an opposite process to hierarchical planning.
Given a plan and a goal task, the problem is to verify that the
goal task correctly decomposes into the plan. This is useful
to check that the plan complies with the hierarchical model.

To describe that some task is already achieved at a given
state, the decomposition method may not contain any sub-
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tasks. Nevertheless, the method typically contains state con-
straints verifying that the task has been achieved in a given
state. We call these tasks empty tasks and the decompositions
empty methods and they will be the focus of this paper.

Many hierarchical planning formalisms do not deal with
empty methods correctly (Ondrčková and Barták 2023). The
traditional wisdom is that empty methods can be compiled
away (Höller et al. 2014), but this does not assume method
constraints. Recently, two new formalisms have been pro-
posed to deal specifically with empty methods (Ondrčková
and Barták 2023). One formalism, called a No-op model,
handles empty methods by using no-op() actions – actions
that do nothing. However, this does not result in the same
plan as the plan is extended by the no-op() actions, which
causes difficulties in plan verification. Therefore another for-
malism, called an Index-Based model, has been proposed to
handle empty methods without creating extra actions. The
transformation between plans of these formalisms to demon-
strate their equivalence has not been shown yet. In this pa-
per, we shall present such a transformation and show how
the two models differ in regards to empty methods. We will
also discuss how to compile the empty methods away. We
will present this compilation for totally ordered domains and
we will provide examples showing why the transformation
is significantly more difficult in partially ordered domains.

Background
For actions in hierarchical planning (Erol, Hendler, and Nau
1996; Bercher, Alford, and Höller 2019) we use the STRIPS
model (Fikes and Nilsson 1971). A world state is modelled
as a set of atomic propositions that are true in that state and
every other proposition is false (closed world assumption).
An action is a 4-tuple of positive and negative preconditions
and effects (pre+(a), pre−(a), eff+(a), eff−(a))). Pre-
conditions represent what must be true in a state for the ac-
tion to be applicable to it (pre+(a) ⊆ s, pre−(a) ∩ s = ∅).
The effects show how an action affects the state (s′ =
(s\eff−(a))∪eff+(a)). The main difference between hier-
archical and classical planning is that hierarchical planning
introduces compound tasks that can decompose into sub-
tasks (other tasks or actions). There might be multiple ways
to decompose a task, each of these is described through a
decomposition method. Let us assume we have a task T that
decomposes to sub-tasks T1, ..., Tk under the constraints C.



The decomposition method is T → T1, ..., Tk [C]. Let U , V
be subsets of tasks from T1,...,Tk or T in which case the set
contains all sub-tasks. We will use constraints as presented
in a book by Ghallab et. al. (2004):
• Ti ≺ Tj : an ordering constraint means that task Ti is be-

fore task Tj . The ordering is explicit here, it does not mat-
ter in which order the sub-tasks appear in the method.

• before(p, U): a precondition constraint means that in ev-
ery plan, the proposition p holds in the state right before
the first action to which set U decomposes.

• after(p, U): a postcondition constraint means that in every
plan, the proposition p holds in the state right after the last
action to which set U decomposes.

• between(U, p, V ): a prevailing constraint means that in
every plan, the proposition p holds in all states lying be-
tween the last action to which set U decomposes and the
first action to which set V decomposes.
Let us assume a task Get-To(V,L) representing how to get

a vehicle V to a desired location L. A decomposition method
into an action drive could look like this:

Get-To(V,L) → drive(V,L0, L) (1)

If more steps are needed to get to the desired location, we
can use a recursive decomposition:

Get-To(V,L) → Get-To(V,L0), drive(V,L0, L) (2)

What if the vehicle is already in the desired location?
Then one can create an empty method decomposing task
Get-To into nothing (ε) and checking the location:

Get-To(V,L) → ε [before(at(V,L),Get-To(V,L))] (3)

Let us differentiate between an empty task and an empty
method. An empty method (Equation 3) is a method that de-
composes a task into no sub-tasks. It may have some ad-
ditional constraints in the form of before or after condi-
tions. It cannot have precedence and between constraints
as it does not decompose into anything so we can only
attach constraints to the entire task (precedence and be-
tween constraints need at least two tasks). Note that the task
this method decomposes might have other decompositions
(empty or non-empty). An empty task is a task that has only
one decomposition method and that method is empty. So
task Get-to is not an empty task but it has an empty method.

Each method can be totally or partially ordered. Totally
ordered method is a method, where all subtasks are linearly
ordered. Totally ordered domain is a domain where each
method is totally ordered. In totally ordered domains, each
task decomposes into a continuous sequence of sub-tasks or
actions. If a domain is not totally ordered, then we call it a
partially ordered domain. Partial ordering allows interleav-
ing of tasks – one task can decompose into an action lying
between actions of another task. See example in Figure 1.

Let us now formalise a hierarchical planning problem:
Given a description of tasks (and actions), their decompo-
sitions, initial state S, and goal task G, does an executable
action sequence (plan) exist, such that G decomposes into
it? This plan is the output.

R S

b2a2b1a1

Figure 1: Task interleaving (actions of tasks R and S inter-
leave in the plan).

Plan verification: Given a description of tasks (and ac-
tions), their decompositions, initial state S, goal task G, and
an action sequence (plan), can G be decomposed into the
plan and is the plan executable?

No-op Model
The No-op model transforms an empty method of task E
into a regular method by decomposing the task E into a no-
op() action – an action with no effects and no preconditions.

E → ε [before(p,E)] (4)

All constraints that were part of the empty method (Equa-
tion 4) are moved to this new decomposition method:

E → no-op() [before(p,no-op() )] (5)

The no-op() action marks the location in the plan, where the
constraints of the empty method are checked. Detailed de-
scription of the model can be found in Ondrčková and Barták
(2023). The disadvantage of this model is creating new ac-
tions in the plan that do not belong there. This is fine with
planning (as they can be removed in the final plan) but it can
be a problem with plan verification. As no-op() actions are
not part of the plan to be verified, they need to be inserted
to proper locations before the plan can be verified with re-
spect to the No-op model. However, it is not clear in advance,
where these locations should be.

Index-Based Model
The Index-Based Model deals with the problem of where
the method constraints should be checked by using indexes.
Each task T has two indexes, start(T ) and end(T ), repre-
senting the position (in the plan) of the first and the last ac-
tion that the task decomposes to. For an empty task, both
indexes point to a space, where the task lies in the plan.
We call these half-indexes. For example, a task T that de-
composes into the first and fifth action will have indexes:
start(T ) = 1, end(T ) = 5. An empty task E that “decom-
poses” before the first action has indexes: start(E) = 0.5
and end(E) = 0.5. As the indexes are unknown until the
plan is obtained, they are represented as variables in the style
of constraint satisfaction. The method constraints can then
be formulated as constraints over these variables:

• Ti ≺ Tj : ⌊end(Ti)⌋ < ⌈start(Tj)⌉,
• before(p, U): before(p, ⌈start(U)⌉),
• after(p, U): after(p, ⌊end(U)⌋),
• between(U, p, V ): between(⌊end(U)⌋,p,⌈start(V )⌉),
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Figure 2: Mapping From No-op To Index Based Model

where start(U) = min{start(t′)|t′ ∈ U}, which is mod-
elled using a new variable whose value equals the value of
the formula. Similarly, end(U) = max{end(t′)|t′ ∈ U}.

The state constraints are then checked as follows:

• before(p, I): p ∈ sI−1, after(p, I): p ∈ sI ,

• between(I, p, J): ∀l, I ≤ l < J : p ∈ sl.

For more detailed description check Ondrčková and Barták
(2023). This model does not create any new actions so it can
be used both in planning and in verification. In fact, one of
the state of the art hierarchical plan verifiers uses the Index-
Based model (Ondrčková et al. 2023).

Conversion Between Index and No-op Models
In this section we discuss the transformation between the
No-op and Index-Based models. In particular, we will show
that any plan that is valid in one model is also valid in the
other model (after handling the no-op actions).

Transformation from No-op to Index-Based Model
Let us be given a plan – the No-op plan – consisting of ac-
tions a1, a2, ... according to the No-op model. Some of the
actions might be no-op actions. We will show, that if we re-
move the no-op actions from that plan, we will get a plan –
the Index-Based plan – according to the Index-Based model.
This is done by constructing function F mapping actions
from the No-op plan to the Index-Based plan. Let N(ai) be
the number of no-op() actions preceding the action ai in the
No-op plan. Then F (ai) = i−N(ai) if ai is a regular action.
If ai is a no-op() action then F (ai) = i−N(ai)− 0.5.

The Index-Based plan is obtained by removing all no-op
actions from the No-op plan. The task decomposition trees
for both plans are almost identical except the empty methods
(see below). Let ai be the first action and aj be the last action
to which some task T decomposes in the No-op model. We
define the indexes for the task T in the Index-Based model
as follows: start(T ) = F (ai) and end(T ) = F (aj). Notice
that if T is an empty task, then ai = aj = no-op() . In such
a case, start(T ) = end(T ) is pointing between two real
actions in the Index-Based plan (half index).

Let us show an example plan in the No-op model (Fig-
ure 2): a1, noop2, noop3, a4, noop5, a6. No-op actions are

obtained from tasks E using decomposition rules E →
no-op() in the No-op model, while the Index-Based model
uses empty methods there E → ε. For example, if noop2 is
obtained from E1 then start(E1) = end(E1) = 1.5. Notice
that indexes of empty tasks in the Index-Based model point
to proper locations in the plan so if there is any state con-
straint in the method, it will be checked at the correct state.
There are seven states in the No-op plan, while the Index-
Based plan contains just four states. However the states be-
fore and after no-op() actions are identical so no information
is lost. For example S1, S2, and S3 in the No-op plan are all
identical and equal to state SI1 in the Index-Based plan.

In order to easier refer to states in each model we
will re-index the states in the No-op model so they better
match the states of the Index-Based model: Let Fa(ai) =
⌈F (ai)⌉. Each state before an action ai will be indexed
as S(Fa(ai)−1)i . The state after last action l is num-
bered S⌊F (al)⌋l . This is because if the last action is a
no-op() action then the state after it is the same as the
state before it. So these are the states of our example:
S01 , S12 , S13 , S14 , S25 , S26 , S36 . Note that ∀x, y : Smx

=
Smy

. This is because every subsequent no-op() action and
the first regular action after that share the same Fa. The
states in the Index-Based model are called SI: SI0 = S01 ,
SI1 = S12 = S13 = S14 , SI2 = S25 = S26 , SI3 = S36 .
Since no-op() actions and empty methods have no effect on
the states we can see that ∀i, x : SIi = Six .

Next let us show that before, after, and between con-
straints are always checked at the same (equivalent) states.
These conditions use sets of tasks U and V , but we already
know which action is the first or last in these sets, so in the
following proofs, we will use these actions.

Before Constraint: Before condition of an action ai in
the No-op model will be checked in the state S(Fa(ai)−1)i

.
For the Index-Based model it will be checked at state:
SI⌈start(ai)⌉−1 = SI⌈F (ai)⌉−1 = S(Fa(ai)−1)i

.
After Constraint: After condition of action ai in the No-

op model will be checked at state right before the follow-
ing action ai+1: S(Fa(ai+1)−1)(i+1)

or if no such action ex-
ists at final state S⌊F (ai)⌋i At the Index-Based model we
should check the condition at SI⌊end(ai)⌋ = SI⌊F (ai)⌋ =
S⌊F (ai)⌋i . If ai is not the last action, it remains to show that
S(Fa(ai+1)−1)(i+1)

= S⌊F (ai)⌋i . For a regular action ai, it
holds N(ai+1) = N(ai) . If ai+1 is also a regular action,
we get: Fa(ai+1) = ⌈F (ai+1)⌉ = ⌈i + 1 − N(ai+1)⌉ =
⌈i−N(ai)+1⌉ = F (ai)+1. If ai+1 is a no-op() action, we
get: Fa(ai+1) = ⌈F (ai+1)⌉ = ⌈i+ 1−N(ai+1)− 0.5⌉ =
⌈i − N(ai) + 0.5⌉ = F (ai) + 1. So S(Fa(ai+1)−1)(i+1)

=
S(F (ai)+1−1)(i+1)

= SF (ai)(i+1)
= SF (ai)i = S⌊F (ai)⌋i .

If action ai is a no-op() action, we can use the fact that
the states before and after a no-op() action are the same.
So S(Fa(ai+1)−1)(i+1)

= S(Fa(ai)−1)i = S(⌈F (ai)⌉−1)i
=

S⌊F (ai)⌋i . The last step is due to the decimal part of F (ai)
being equal to exactly 0.5 for no-op() actions.

Between Constraint: Let us assume a between condition
that begins after action ai and ends before action aj . In the
No-op model, the condition will be checked in states starting
with S(Fa(ai+1)−1)(i+1)

or S⌊F (ai)⌋i , if ai is the last action



(the state after action ai) and ending with S(Fa(aj)−1)j
(state

before aj). In the Index-Based model, we will check this
condition between states SI⌊end(ai)⌋ and SI⌈start(aj)⌉−1.
From previous, we already know S(Fa(ai+1)−1)(i+1)

=
SI⌊end(ai)⌋ and S(Fa(aj)−1)j

= SI⌈start(aj)⌉−1 so the same
sets of states will be used.

Precedence Constraint: In the No-op model we check
precedence constraints by checking that the last action of
the first task is before the first action of the following task.
Let us look at constraint Tk ≺ Tl and let us assume that the
last action of Tk is ai and the first action of Tl is aj . Then
we simply check that i < j. In the Index-Based model we
use: ⌊end(Tk)⌋ < ⌈start(Tl)⌉, that is, ⌊F (ai)⌋ < ⌈F (aj)⌉.
Independently of whether aj is a real or no-op() action, we
know ⌈F (aj)⌉ = j − N(aj). Let ai be a real action, then
⌊F (ai)⌋ = i − N(ai). i < j means that action ai is before
action aj in the No-op plan so we can write j = i + r +
N(aj)−N(ai)+1, where r ≥ 0 is a number of real actions
between ai and aj . Hence, i−N(ai) = j−r−1−N(aj) <
j − N(aj), which proves ⌊F (ai)⌋ < ⌈F (aj)⌉. Let ai be
a no-op() action, then ⌊F (ai)⌋ = ⌊i − N(ai) − 0.5⌋ =
i −N(ai) − 1. Similarly to above, i < j means that action
ai is before action aj in the No-op plan, but because ai is
included in N(aj) we have j = i + r + N(aj) − N(ai),
where r ≥ 0 is a number of real actions between ai and aj .
Together, i−N(ai)−1 = j− r−N(aj)−1 < j−N(aj),
which proves ⌊F (ai)⌋ < ⌈F (aj)⌉.

Transformation from Index-Based to No-op Model
In the Index-Based plan, we have real actions (totally or-
dered) and empty tasks (lying between the real actions). The
order is defined via the start indexes. It may happen that sev-
eral empty tasks lie at the same location – they have identi-
cal start index (see Figure 2). These empty tasks still need to
satisfy the ordering constraints, so we order them arbitrarily
but according to these constraints. This gives a total order
of real actions and empty tasks. We will now construct a
function F ′ that maps actions and empty tasks in the Index-
Based plan to positions in the No-op plan. This position indi-
cates where the real action or a no-op() action (for an empty
task) lies in the No-op plan. Let N ′(a) be the number of
empty tasks before a in the Index-Based plan (using the or-
dering discussed above). Then F ′(a) = ⌈start(a)⌉+N ′(a).
We shall show that F ′ is inverse to F by proving that
F (aF ′(a)) = start(a).

If a is a regular action then F (aF ′(a)) = F ′(a) −
N(aF ′(a)) = (⌈start(a)⌉ + N ′(a)) − N(aF ′(a)). Recall
that N(ai) is the number of no-op() actions before action
ai in the No-op plan. For any empty task E lying before a
in the Index-Based plan, it holds start(E) < start(a) and
N ′(E) < N ′(a). Therefore, all such tasks E are mapped
to no-op() actions before a in the No-op plan (F ′(E) <
F ′(a)). On the other hand, no empty task E lying after
a in the Index-Based plan, is mapped to no-op() action
before a in the No-op plan (F ′(a) < F ′(E)). Therefore,
N(aF ′(a)) = N ′(a) and so F (aF ′(a)) = ⌈start(a)⌉ =
start(a).

If a is an empty method then we get: F (aF ′(a)) =

F ′(a) − N(aF ′(a)) − 0.5 = (⌈start(a)⌉ + N ′(a)) −
N(aF ′(a))−0.5. Using the same arguments as above we get
N(aF ′(a)) = N ′(a) and hence F (aF ′(a)) = ⌈start(a)⌉ −
0.5 = start(a) (recall that start(a) is half-index).

We need to show now that the method constraints are sat-
isfied in the No-op plan provided that they are satisfied in the
Index-Based plan. Based on the notation introduced before,
if a is a real action or empty task in the Index-Based plan,
the state right before that real action or the no-op() action in
the No-op plan is S(⌈start(a)⌉−1)F ′(a)

= SI⌈start(a)⌉−1

Before Constraint: For an empty method or ac-
tion a we check the condition at state: SI⌈start(a)⌉−1.
In the No-op model we will check it at state
S(Fa(aF ′(a))−1)F ′(a)

= S(⌈F (aF ′(a))⌉−1)F ′(a)
=

S(⌈start(a)⌉−1)F ′(a)
= SI⌈start(a)⌉−1.

After Constraint: In the Index-Based plan we check the
condition of action or empty task a at state SI⌊end(a)⌋. In the
No-op plan, this condition is checked in the state right before
the action aF ′(a)+1, which is S(Fa(aF ′(a)+1)−1)(F ′(a)+1)

. If a
is the last action in the Index-Based plan then SI⌊end(a)⌋ is
the last state there. In such a case action aF ′(a)+1 does not
exist in the No-op plan and the condition is checked in state
S⌊F (aF ′(a))⌋F ′(a)

= S⌊start(a)⌋F ′(a)
= SI⌊end(a)⌋.

Let us assume that b is an action or an empty task
right after a in the Index-Based plan, then SI⌊end(a)⌋ =
SI⌈start(b)⌉−1 and aF ′(a)+1 = aF ′(b). Now we can
write S(Fa(aF ′(a)+1)−1)(F ′(a)+1)

= S(Fa(aF ′(b))−1)F ′(b)
=

SI⌈start(b)⌉−1 = SI⌊end(a)⌋.
Between Constraint: When the plan is given, checking

the between constraint is equivalent to checking before con-
straints for specific actions and empty tasks, which we al-
ready proved to be equivalent for both models,

Precedence Constraint: If action or empty task a is be-
fore an action or empty task b in the Index-Based plan, then
F ′(a) < F ′(b). Hence any precedence constraint satisfied
in the Index-Based plan is also satisfied in the No-op plan.

Compiling Away Empty Methods with State
Constraints

One may ask, whether it is possible to compile empty tasks
away from the hierarchical model, that is, to construct a hi-
erarchical model generating the same set of plans but hav-
ing no empty tasks. Höller et al. (2014) showed that this
can be done for empty methods without state constraints.
They used the model transformation known from context-
free grammars that simply eliminates empty tasks by remov-
ing them from methods that decompose to them. However,
this approach does not work when the empty method has
a constraint attached to it. The reason is that we still need
to check that constraint at some state. For example, in Get-
To(V,L) task, we need to check that the vehicle V is at the
destination location L (Equation 3).

Empty methods may contain only before and after con-
straints, but these constrains apply to the same state. For
an empty task E with start(E) = end(E) = i + 0.5 we
must check the after condition at ⌊end(E)⌋ = i so at state
si. A before condition of the same task must be checked at



s3s2 s3s2s1

s0s1s0

T

L E M

L<E, E<M

a1 a2 a3 a4

constrE

E

T

L M

L<M

a1 a2 a3 a4
constrE

a2<a3
a3<a4

a2<a3
a3<a4

constrE

Figure 3: Passing Constraints From Empty Method to Fol-
lowing Task

⌈start(E)⌉−1 = i+1−1 so also at state si. Since both con-
ditions are checked at the same state, we can transform any
after constraint of an empty method into a before constraint.
Hence without loss of generality we will assume only before
constraints in empty methods.

Compiling Away Empty Methods In Totally
Ordered Domains
Totally ordered domains have some specifics. For example,
the between constraint can be compiled to before constraints
and hence we may assume models without between con-
straints. This is done as follows, constraint between(U, p, V )
in a method with subtasks ST is substituted by a set of
constraints before(p, T ) for each T ∈ ST such that ∀A ∈
U : A ≺ T ∧ ¬∃B ∈ V : B ≺ T . Similarly, if before
and after constraints span over a set of subtasks, they can
be converted to equivalent constraints using a single task.
before(p, U) is substituted by before(p, T ), where T ∈ U
such that ¬∃B ∈ U : B ≺ T (such T is unique in totally
ordered domains). after(p, U) is substituted by after(p, T ),
where T ∈ U such that ¬∃B ∈ U : T ≺ B. This is an im-
portant observation as in totally ordered domains, we may
assume only state constraints related to a single subtask.

In this section, we will show how to compile away empty
methods with state constraints in totally ordered domains.
The idea is moving these constraints to a task that directly
follows the empty task in the plan (see Figure 3). If no such
task exists, the before constraint is changed to after con-
straint and moved to a directly preceding task. If there is
no preceding and no following task, we need to go one level
up in the hierarchy. As tasks are totally ordered, one may
locally find directly preceding and directly following task.

The first step in compiling empty methods away is to con-
vert empty methods into empty tasks. Let us assume we have
a task T with two decomposition methods: M1 : T →
A,B [C1] and M2 : T → ε [C2]. We remove method
M2, create a new task T ′, and add an empty method to it:
M ′ : T ′ → ε [C2]. If there are multiple empty methods for
one task we will create a new empty task for each method. If
task T is a subtask in some method N , we add a new method
N ′ where we substitute (some) T for T ′. We do this for ev-
ery empty method. We will also keep a record that will tell us
which new tasks were created (T ′) and what task they were
created from (T ). We will call T the original task. Every time

we create a new empty task from an empty method we check
whether an empty task with the same conditions wasn’t al-
ready created from the same original task. If yes, then we
will not create it again. At the end of this process we have no
empty methods that would not be related to an empty task.
We create one empty task for each original empty method.

Next we will show how to remove an empty task. There
are three options of how the method, where an empty task is
a sub-task, can look:

Option A: The method contains a subtask that is right af-
ter the empty task E. For example M1 : T → L,E,M [L ≺
E,E ≺ M ]. Since this is totally ordered, we know that task
M decomposes into an action that immediately follows the
empty task E (see Figure 3). If the empty task E contains
constraint before(p,E) or such a constraint is part of M1, we
add this constraint to task M in the method. We transform
method M1 by removing task E from it and adding con-
straint before originally related to E and now related to M .
This is how the new method looks M ′

1 : T → L,M [L ≺
M, before(p,M)]. Note that this transformation works even
if M is an empty task as it will be removed later using a
similar process. Also, if M1 contains constraint after(p,E)
or in general more state constraints related to E, they will
all be added as before constraints related to M .

Option B: What if there is no task following an empty
task in the decomposition, such as M1 : T → L,E [L ≺
E]? Then we add the condition of the empty task E as an
after condition of task L. If task E is at position i + 0.5,
then its before constraint should be checked at state si. Since
the domain is totally ordered we know that the last action,
that L decomposes into, is at position ai. We check the after
condition for action ai at state si, which is exactly what we
need. We will transform method M1, by removing task E
from it and adding the before constraint of empty task E as
an after condition on L. This is how the new method looks
M ′

1 : T → L [after(p, L)]. Again, it works even if L is an
empty task.

Option C: What if a task only decomposes into an empty
task, such as M1 : T → E [C]? Then we remove E from
the decomposition and we create a new empty method for
task T . This means that it is possible to create a new empty
method from an empty task. We get M ′

1 : T → ε [C +CE ],
where CE are constraints of E (now applied to T ). If there
are no other decompositions of task T , then we simply get
a new empty task T from empty task E and we continue
trying to remove the next empty task. However, if there is
another decomposition of T , then we need to use the first
step of transforming an empty method into an empty task.

What about recursion? Since we transform an empty
method into an empty task and then back, is not it possi-
ble to just keep creating new empty tasks infinitely? No, this
is why we check when we create a new empty task from an
empty method whether an empty task with the same condi-
tions already exists and if so we will not create a new one.

Let us look at an example of T → A [CT ] and A →
T [CA], with an empty method M : T → ε [CE ]. We first
transform this empty method M into an empty task T ′ so
we get: T → A [CT ], A → T ′ [CA]. Then we remove
T ′ so we get a new empty method on A:A → ε[CA, CE ].
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Figure 4: Passing Constraints From Empty Method to Following Task.

Note that this new empty method has both the original con-
straints of the decomposition of A and the constraints of the
empty task E. We continue this by transforming it into an
empty task A′. T → A′ [CT ], A′ → ε [CA, CE ] Then
we remove the empty task A′: T → ε [CT , CA, CE ]. Now
we must turn this empty method into an empty task, but
we already have T ′ so we create T ′′ → ε [CT , CA, CE ].
We then once again remove it. So we must again create
a new empty method for A: A → T ′′, which then cre-
ates new empty task A′′ → ε [CT , CA, CE ] but the contin-
ual creation of new empty tasks stops once we remove the
empty task A′′. This is because we get a new empty method:
T → ε [CT , CA, CE ], we attempt to create a new empty task
T ′′′ but there already exists an empty task T ′′ with the same
condition that was created from the same original task. The
number of conditions in the domain is finite and therefore
the algorithm will eventually stop.

Why Is It Hard to Compile Away Empty Methods
In Partially Ordered Domains?
In order to compile empty methods away in totally ordered
domains, we passed the constraints onto the next following
task, which then checks the constraints at the state right be-
fore the following action. Could we do the same in partial
ordering? Let us look at how would we find this next action.
Partial ordering allows interleaving (see Figure 1). So a task
that is in a different level of the decomposition and that does
not relate to the empty method at all might decompose into
the immediately following action. We can see two examples
of this in Figure 4. In one case, the task G decomposes into
the following action c and in the other case it is the task M
that decomposes to the following action d. Notice that they
both interleave with task T , the parent of the empty task E.
These are just two examples of possible decompositions as
there are no ordering constraints between tasks G,M and
their sub-tasks.

We could attempt to get all possible orderings between ac-
tions and empty methods to deduce which actions can be af-
ter a specific empty method. However, in order to do this, we
need to differentiate same actions that were create from dif-
ferent parent tasks. This requires us to calculate all the pos-
sible decompositions of the model. Another problem arises
with recursion that may lead to infinite number of possible

decompositions.
Let us assume for a moment that we can find the following

action for an empty task and we can put the before condition
of the empty method into it. There is still another problem
we must solve and that is ordering. If an empty task is the
first or last sub-task of an ordered task, then by removing
the empty method we also remove the marker of where the
other task should end/start. Let us show this on an example:
M → O,P [O ≺ P ]; P → E,L[E ≺ L]; E → ϵ[C]. Let
us imagine that start(E) = 2.5 and start(L) = 5 (this is
possible due to interleaving so actions of other tasks may lie
between E and L). Then start(P ) = start(E) = 2.5. For
the plan to be valid, task O must have end(O) < ⌈2.5⌉. Let
us now assume that we move the constraint from the empty
method to the immediately following action and we also re-
move task E. So now task P has start(P ) = 5 and there-
fore task O may have start index as high as 4.5 (as opposed
to 2.5). This is clearly a relaxation of the original problem.
What happens is that if an empty task is the first sub-task
of some parent task P , then by removing the empty task
we lose the starting point of that task P , which makes any
precedence constraints related to task P invalid.

Conclusion
In this paper we focused on empty methods in hierarchical
planning. We showed that two recently introduced models
for hierarchical planning are equivalent in the sense that ar-
bitrary plan in one model can be transformed to a plan in
the other model. We also showed than in totally-ordered do-
mains, it is possible to compile empty methods away even
if they have constraints attached. For partially-ordered do-
mains, we discussed some difficulties that appear when one
attempts to compile empty methods away. This problem is
still open and it poses a challenge for future research.
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