
Shortest Walk in a Dungeon Graph

Christopher Durham, Chris Alvin
Furman University

Department of Computer Science
Greenville, SC, USA

chris.alvin@furman.edu

Abstract

With games like No Man’s Sky and Diablo IV, proce-
dural generation of content in games is ever-increasing.
Heuristics are needed to assess the goodness of gener-
ated content. Using Nintendo’s The Legend of Zelda as
inspiration, we formalize the idea of a dungeon graph:
a graph consisting of ‘locked’ edges in which ‘keys’
are acquired from specific nodes. We then introduce
the Shortest Dungeon Walk Problem as well as a solu-
tion to this problem in the context of a dungeon graph
and reduce Traveling Salesperson Problem in polyno-
mial time to the Shortest Dungeon Walk Problem and
conclude that Shortest Dungeon Walk Problem is NP-
Complete. We then assess practical performance of the
shortest walk algorithm using the first eight dungeons
in the Legend of Zelda.

1 Introduction and Motivation
Procedural generation of levels in games has been well-
documented (Smelik et al. 2010; Valtchanov and Brown
2012; Khalifa et al. 2016). Games such as No Man’s Sky
(Hello Games 2016) tout a procedurally generated universe,
but often the reality of the generated content can be a bit
stark. More recently, developers at Blizzard modified their
dungeon generation algorithm in Diablo IV between Sea-
son 1 and Season 2 in response to player feedback. Their
complaint: too much backtracking (Colp, Tyler 2023). In this
work we propose a problem and solution that may be used as
a heuristic for verifying procedurally generated graph-based
dungeons in games.

We can represent a dungeon from the 1986 game The
Legend of Zelda (Nintendo 1986) for the Nintendo Enter-
tainment System (NES) as a sparse, undirected graph with
locks and keys for those locks. We call this type of graph
a dungeon graph. Our goal is to compute a shortest walk
of a dungeon as a measure of the quality of the design and
complexity of a dungeon (Bond 2022).

As an introduction to the shortest dungeon walk problem
and our solution algorithm, we consider an example using
the first dungeon from the Legend of Zelda as shown in
Figure 1: the “Eagle Dungeon”. The dungeon consists of

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

Figure 1: The “Eagle dungeon” from Legend of Zelda. Keys
can be acquired in rooms with a key icon. Closed doors may
be unlocked.

17 rectangular rooms (nodes in a dungeon graph); in Fig-
ure 1, six rooms hold keys, indicated with a key icon, which
the player can obtain. The player may freely walk between
rooms via doors (an edge in a dungeon graph) if a passage-
way is indicated; e.g., in Figure 1 the player may navigate
from the bottom-left room to the bottom-middle without a
key. However, as seen in Figure 1, the player may have to
acquire and expend a key to navigate between two rooms
separated by a locked door. For example, a key is needed to
unlock the door between the bottom middle room and the
singleton room directly to the north.

We share a few assumptions about dungeon navigation
and the shortest dungeon walk problem. In the Legend of
Zelda, players may navigate a dungeon by blasting through
select walls using bombs. We assume an infinite number of
bombs and complete knowledge of rooms, room contents,
cracks in the wall (where bombs will be effective), etc. We
also note that once a door is unlocked, it remains unlocked.

C0

C1

B2 D2

A3 B3 C3 D3

E4 F4

B5

start

end

Figure 2: The “Eagle dungeon” as a dungeon graph. Dashed
edges are locked doors; solid edges are unlocked doors.
Nodes are labeled using a grid: top-to-bottom rows are 5
down to 0 while left-to-right columns are A through F .

For clarity in presentation of the “Eagle dungeon”, we use
the graph in Figure 2 corresponding to the dungeon in Fig-
ure 1. In Figure 2, doors are edges: there are six locked doors
indicated with dashed lines while unlocked doors are solid.
We also label the six rooms (nodes) with keys; they are B0,
D0, C2, E3, C4, C5.

Our goal is to compute a shortest walk of the dungeon.
We note that there does not exist a shortest path with the
dungeon in Figure 2 since the locked door (C0, C1) must
be traversed to advance to the rest of the graph. Thus, in or-
der to unlock the door at (C0, C1), the player must obtain a
key from either room B0 or D0. Hence, shortest successful
traversal of such a dungeon requires a player pursue a short-
est walk and not a shortest path as it may be the case that
rooms must be visited multiple times.

In order to compute a shortest walk, we use a brute force
approach that takes as input a dungeon graph (such as Fig-
ure 2), a set of rooms with keys K, and a set of locked
doors L. Each walk is constructed using an ordered sub-
set of keys and an ordered subset of locked doors of the
same magnitude. The walk then takes a shortest available
path (i.e., excluding locked edges) to each key, and marks
each edge as available in order. For example, a successful
walk is constructed from the ordered key set {B0, C4, E3}
with the locked edge set {(C0, C1), (C3, D3), (E3, E4)}.
This gives us a walk consisting of the ordered list of 12
rooms [C0, B0, C0, C1, C2, C3, C4, C3, D3, E3, E4, F4]
of length 111. However, this is not a shortest walk of this
dungeon.

A shortest walk can be constructed from the key set
{B0, E3} with the locked edge set {(C0, C1), (E3, E4)}.
This gives us a walk [C0, B0, C0, C1, C2, D2, D3, E3, E4,
F4] of length 9. Note that this walk happens to be a shortest
path in the dungeon with a detour to get the key at B0. In a
dungeon graph, there may be multiple unique shortest walks
as is evident by opting for the key at D0 in the walk: [C0,

1Walk lengths are based on the number of edges traversed.

D0, C0, C1, C2, D2, D3, E3, E4, F4].
In this paper, we introduce the Shortest Dungeon Walk

Problem, describe our graph-based representation of the
problem in §2. In §3, we present a solution algorithm and
prove its correctness. We show that the problem is NP-
complete in §3.1. Finally, in §4, we demonstrate the effi-
cacy of our solution with dungeon graphs from the Legend
of Zelda.

2 Representation
While the origin of the Shortest Dungeon Walk Problem
problem is from a video game, the problem and its solu-
tion is not limited in its application. We approach the short-
est walk problem generally although the names of our con-
structs may seem specific to the problem. Finding a shortest
walk begins with the underlying graph structure in which we
encode rooms as nodes and doors as edges.
Definition 1 (Dungeon Graph). A dungeon graph is an undi-
rected graph G (R,D) consisting of a node-set of rooms R
and an edge-set of doors D ⊆ R×R.

We define particular subsets of R and D in a dungeon
graph G. We say K ⊆ R is the set of rooms containing
keys. Similarly, we say L ⊆ D is the set of doors that are
locked, thus prohibiting traversal from one room to another
(unless a key is obtained). We may thus represent a dungeon
graph with greater granularity as G (R[K], D[L]). For con-
venience, we define KC = R \K and LC = D \ L.

Since (un)lockability of doors is important, we introduce
the concept of a position in a dungeon graph. When con-
text is clear, we will refer to a dungeon position simply as a
position.
Definition 2 (Dungeon Position). A dungeon position p in a
dungeon graph G (R,D) is a tuple p = (r, k) with r ∈ R
and k ∈ N0 the current number of keys available to unlock
doors.

In order to compute a shortest walk in a dungeon graph,
each movement may have side-effects (e.g., picking up a
key, using a key to unlock a door, etc.). We describe each
type of ‘move’ from one position to another in a dungeon
graph.
Definition 3 (Dungeon Move). A dungeon move m is the
transition from a dungeon position p in a dungeon graph
G (R[K], D[L]) to a new position p′ in G (R[K ′], D[L′])
accounting for state changes induced by the move. A move
is valid if and only if it matches one of the following cases.
Case 1: Unrestricted movement. Transition without using
a key from a room r to an unlocked room r′ that does not
contain a key: (r, k), G → (r′, k), G where (r, r′) ∈ LC

and r′ /∈ K.
Case 2: Unlocking a locked door. Consuming a key by mov-
ing from a room r to a room r′ that does not contain a key:
(r, k), G (R,D[L])→ (r′, k′), G (R,D[L′]) where:

• (r, r′) ∈ L,
• r′ ∈ KC ,
• k > 0,

• k′ = k − 1, and
• L′ = L \ {(r, r′)}.

Case 3: Unlocked door with key at the destination.
Moving from a room r to an unlocked room with key
r′ and picking up that key: (r, k), G (R[K], D) →
(r′, k′), G (R[K ′], D) where:

• (r, r′) ∈ LC ,
• r′ ∈ K,

• k′ = k + 1, and
• K ′ = K \ {r′}.

Case 4: Locked door with key at the destination.
Transitioning from room r to room r′ by unlocking,
and picking up a key in r′: (r, k), G (R[K], D[L]) →
(r′, k), G (R[K ′], D[L′]) where:

• (r, r′) ∈ L,
• r′ ∈ K,
• L′ = L \ {(r, r′)},

• k > 0, and
• K ′ = K \ {r′}.

A move in a dungeon graph only alters the underlying
subsets of rooms and doors; for example, consuming a key
by unlocking a door shifts a door from being locked to un-
locked. Generally, a move m in a dungeon graph G (R,D)
results in a corresponding graph G′ (R′, D′). However,
rooms and doors are static: it is always the case that R = R′

and D = D′. Our last definition formalizes a walk in a dun-
geon graph as a sequence of dungeon moves.

Definition 4 (Dungeon Walk). For a dungeon graph
G (R,D), a dungeon walk w is a sequence of valid dun-
geon moves from a start room a ∈ R to a goal room g ∈ R.
The length of w, denoted |w|, is the number of valid moves
in the sequence.

A dungeon walk can be uniquely identified by the rooms
that it passes through, as there is only ever at most one valid
dungeon move between two rooms. Unless otherwise spec-
ified, a dungeon walk starts with a position with zero keys
and may end with a positive number of keys.

3 Algorithm
In this section, we define a bounded, brute-force algorithm
to find a shortest walk in a dungeon graph from an input
room to a final, goal room. This algorithm assumes that the
walker possesses zero keys at the beginning of the walk.

Our solution assumes a general purpose graph shortest
path algorithm is defined as Λ(G, a, g) where G = (N,E)
is a graph composed of nodes N and edges E, a is the start
node, and g is the final node; e.g., Dijkstra’s shortest path
algorithm is one such algorithm (Dijkstra 1959).

For a dungeon graph G (R,D), Algorithm 1 computes a
shortest walk from origin room a ∈ R to goal room g ∈
R. We describe the algorithm in general before discussing
details. Algorithm 1 is brute force as SHORTWALK checks
every possible ordering of locked doors and every possible
ordering of keys to unlock said doors. A shortest walk is
constructed in BUILDWALK as the path from the start room
to, in turn, each room with a chosen key, adding locked doors
to the set of valid edges as we pick the key designated for use
on that door.

We consider Algorithm 1 in detail. We begin with an ini-
tial, empty walk (Line 6) of infinite length (Line 7). Algo-
rithm 1 then considers all permutations of keys (Line 10)
and locked doors (Line 12) to accumulate a path. However,

Algorithm 1 Naive Shortest Dungeon Walk
1: function SHORTWALK(G (R[K], D[L]), a, g)
2: G: Dungeon Graph
3: a ∈ R: starting room
4: g ∈ R: goal room
5:
6: λ← ∅ ▷ Empty walk
7: |λ| ← ∞ ▷ Infinite length
8: for all r ∈ [0 . . . |K|] do ▷ For all rooms with keys
9: ▷ For all sequences of rooms with keys

10: for all k ∈ r-length permutations of K do
11: ▷ For all sequences of locked doors
12: for all ℓ ∈ r-length permutations of L do
13: w ← BUILDWALK(G, k, ℓ, a, g)
14: ▷ Save current shortest walk
15: if |w| < |λ| then
16: λ← w
17: return λ
18:
19: function BUILDWALK(G (R,D), k, ℓ, ra, rg)
20: G: Dungeon Graph
21: k: list of rooms with keys
22: ℓ: list of locked doors
23: ra ∈ R: starting room
24: rg ∈ R: goal room
25:
26: w ← ∅ ▷ w: walk accumulator
27: r ← ra ▷ r: current room
28: ▷ Seek a shortest path between each locked door
29: for all i ∈ [0 . . . n) do ▷ Half-open range
30: ℓ′ ← ℓ[0, . . . , i− 1]
31: k′ ← k[i] ▷ Zero indexed
32: w ← w + Λ((R,D + ℓ′), r, k′)
33: ▷ Update r for next path between locked doors.
34: r ← k′

35: ▷ Append path from last room to goal
36: w ← w + Λ((R,D + ℓ), r, rg)
37: return w

we note that a walk in a dungeon graph need not accumu-
late all keys in order to be a shortest walk. Therefore, while
the loops on Line 10 and Line 12 search permutations of the
sets, the outer loop (Line 8) ensures we search key and door
sets of increasing size (starting with 0 keys).

The core of the shortest walk algorithm is an accumula-
tion of shortest paths between rooms with keys and locked
doors defined in BUILDWALK starting on Line 19. The loop
starting on Line 29 sequentially unlocks the list of locked
doors (ℓ) using the next key in the sequence (given by k). We
then sequentially seek a shortest path between our current
position and the next locked door (Line 32) with a modified
version of the original graph accounting for unlocked doors.
We note that if the path-finding algorithm (Λ) fails to find
a path, likely due to disconnectivity due to locked edges, it
returns an infinite length path. Last, on Line 36 we then fin-
ish the current walk by appending a shortest path from the
current room to the final room.

Since Algorithm 1 considers all such path permutations

of keys and locked doors, we will find a shortest walk; we
formalize this notion in the following lemma.

Lemma 3.1 (Correctness of Algorithm 1). If a shortest walk
w exists from a start room a ∈ R to an end room g ∈ R in a
dungeon graph G (R[K], D[L]), Algorithm 1 will identify a
walk not longer than w.

Proof. Let w be a shortest walk in G. Since a walk can
be classified by the ordered set of keys K that it picks
up and the ordered set of locked doors L that it unlocks,
there are three potential cases for the relationship between
|K| and |L|:

1. |K| < |L|. In this case, more locked doors are unlocked
than keys are collected. This constructs an invalid walk,
as the dungeon move to unlock a door after using up all
keys would be invalid.

2. |K| > |L|. In this case, more keys are collected than
locked doors are unlocked. This walk is strictly longer
than or equivalent to a walk which has K as the pre-
fix with the same cardinality as L. By triangle inequality
property, this walk will always require more valid moves
to travel from a room r1 to a room r2 to a room r3 than
directly from r1 to r3, unless r2 is on a shortest path from
r1 to r3. For the case where r2 is on a shortest path, we
say K is allowed to omit a key from the ordered set if and
only if the walk would also be valid on a dungeon graph
that did not contain that key. Thus, this case reduces to
|K| = |L| with respect to a shortest walk.

3. |K| = |L|. In this case, the same number of keys are col-
lected as doors are unlocked.

Thus, a shortest walk w must be identified by some
K, L where |K| = |L|. Algorithm 1 constructs a walk
(Line 13) for every permutation of keys (Line 10) and of
doors (Line 12) of every length (Line 8), then chooses a
shortest one out of those (Line 14). The constructed walk
is a shortest available for that choice of keys and doors, as
the shortest available path between each key is taken using
Λ on Line 32 and Line 36.

As such, Algorithm 1 constructs walk w from its key and
locked door sets K, L, and either produced w or some other
walk not longer than w. Hence, Algorithm 1 produces a
shortest walk.

3.1 Complexity
In this section we consider the complexity of Algorithm 1 as
well as the complexity class of the Shortest Dungeon Walk
Problem.

Lemma 3.2 (Complexity of Algorithm 1). Let
G (R[K], D[L]) be a dungeon graph, a ∈ R, and
g ∈ R. Computing a shortest walk from a to g in G using
Algorithm 1 is O(K! · L! · K · O(Λ)), where O(Λ) is the
complexity of a shortest pathfinding algorithm Λ over G.

Proof. The complexity can be constructed by multiplying
the complexity of the loops in Algorithm 1: for all permu-
tations of keys K on Line 10 (O(K!)), for all permutations
of L doors on Line 12 (O(L!)), for all keys in the subset on

x y z

a gpstart end

Figure 3: A dungeon graph to solve the Traveling Sales-
person Problem for the connected subgraph {x, y, z} (high-
lighted). Dashed edges are locked.

Line 29 (O(K)), and computing a shortest path to that key
on Line 32 (O(Λ)).

As such, this algorithm is combinatorially slow for non-
trivial sizes of L and K. Our experimental analysis in §4
relies on the fact that dungeons are generally ‘small’ in prac-
tice and thus the sets L and K should be small as well.

Lemma 3.3 (Complexity Class of the Shortest Dungeon
Walk Problem). The Shortest Dungeon Walk Problem is NP-
Complete.

Proof. We show that the Shortest Dungeon Walk Problem
is NP-Complete by reducing from the Traveling Salesper-
son Problem (Cormen, Leiserson, and Rivest 1997, §36.5.5).
That is, given a polynomial time solution for the Shortest
Dungeon Walk Problem, we can solve the Traveling Sales-
person Problem in polynomial time. We do so by converting
the Traveling Salesperson Problem into the Shortest Dun-
geon Walk Problem. Our reduction is multi-step process for
how to convert an arbitrary undirected graph H to a dungeon
graph G.

Suppose H(N,E) is an undirected graph: nodes N and
edges E. We then begin constructing a dungeon graph
G (R,D) by adding all edges E to doors D. We then place
keys in all the original nodes N resulting in dungeon graph
G (R[K], D[L]) where R = N , K = N , D = E, and
L = ∅. This first part of the construction is shown in blue in
Figure 3: N = {x, y, z}.

We next add a pivot node p to G to serve as our entry and
exit point into H; we add p to the set of rooms with keys
(K ← K + {p}). We then add a locked door from p to ev-
ery original room (L← {(p, x) | x ∈ N}). The addition of
room p and its outgoing doors can be observed in Figure 3.

We now add |N | + 1 rooms to R without keys
(R← R+ {nx | x ∈ [0 . . . |N |]}). We then name one of
these new non-key rooms as our start node a and one of the
new non-key rooms as a goal node g. We draw an unlocked
edge from a to p (D ← D + {(a, p)}) as access to the dun-
geon. Hence, we can now access the original graph H with
the dungeon sub-walk [a, p, x] for some x ∈ N .

For our exit path, we draw locked edges between each
room in the dungeon that was not in the original graph H
excluding a: D \ (N ∪ {a}). The result is that each of these
exit path rooms has degree 2 except for g, which has degree
1. In Figure 3, the exit path set of |N | nodes consists of the
three nodes, two of which are unlabeled and the last node
ending in g. This construction guarantees a path between
p and g consisting of |N | locked edges. This concludes of
construction of G.

start end

Figure 4: Counterexample of the “fewest keys” optimization

start end

Figure 5: A counterexample of “smallest deviation” opti-
mization

Solving the Shortest Dungeon Walk Problem for G now
necessarily also solves the Traveling Salesperson Problem
for H: traversing from a to p, then a TSP solution travers-
ing H and ending up back at p, and concluding with the
exit path nodes in G ending in g. We observe that the con-
structed graph G has a satisfactory number of keys. If the
original graph has v nodes, our constructed graph has v + 1
keys: one at each original node, and one at p. v keys must be
used to travel from p to g by construction. As such, exactly
one edge from p to the original graph can be unlocked, and
every original node must be visited to collect their key. The
subset of the Dungeon Path between visits to p thus solves
the Traveling Salesperson Problem.

We conclude that the Shortest Dungeon Walk Prob-
lem must be at least as hard as the Traveling Salesper-
son Problem. As the Traveling Salesperson Problem is
NP-Complete (Cormen, Leiserson, and Rivest 1997, Thm.
36.15), the Shortest Dungeon Walk Problem must also be
NP-Complete.

3.2 Non-Total Optimizations
For procedural generation, we describe some possible opti-
mizations that may not always find a shortest dungeon walk.
Fewest Keys. Is it possible that a walk that uses the fewest
number of keys will be a shortest walk? A counterexample
is shown in Figure 4 in which picking up and using a single
key will reduce the walk from 5 rooms to 3 rooms. Hence,
this optimization is non-total.
On-Demand Key Acquisition using Smallest Path Devi-
ation. Consider an optimization where we compute a short-
est path between start and goal node ignoring locked edges.
Then, we modify the path to pick up enough keys. The
simplest method of acquiring a key would be to seek the
key which causes the smallest deviation from the current
walk. Unfortunately, larger deviations can result in ulti-
mately shorter walks when multiple keys need to be picked
up. In Figure 5, the initial smallest deviation would pick up
the top key at a cost of distance 4, but a second key needs
to be acquired. Hence, the first of the bottom keys must be
obtained at a cost of 6 for a total of distance 15 to walk to
the last node. If, however, the walk acquired both keys from
the bottom rooms, the total walk cost is 11. Thus, this opti-
mization is non-total.

Table 1: Dungeon characteristics of the first 8 dungeons of
The Legend of Zelda (Playthrough 1).

Dungeon Key Count Locked Door Count
1 6 6
2 4 3
3 5 4
4 4 5
5 7 6
6 5 5
7 3 4
8 4 4

Table 2: Graph characteristics of the first 8 dungeons of The
Legend of Zelda (Playthrough 1).

Dungeon Node Count Edge Count Avg. Connectivity
1 17 18 1.12
2 18 23 1.47
3 18 21 1.31
4 20 23 1.25
5 23 25 1.07
6 25 27 1.07
7 33 36 1.07
8 25 26 1.04

4 Experimental Analyses
We used the dungeons from The Legend of Zelda (Nintendo
1986) as a benchmark set of dungeons built in the dungeon
room style to verify Algorithm 1 and gather empirical data.
This data set gives us human-designed dungeons of a rea-
sonable size for actual human play.
Background. We implemented Algorithm 1 in the Rust2
programming language and benchmarked it using the Cri-
terion statistical benchmarking harness3 over the first eight
dungeons of the first playthrough of The Legend of Zelda.
Benchmarks were run on a 1.7GHz Intel Xeon processor
with 12 cores and 32 GB RAM. In order to optimize our
algorithms, we note that the input graph is fixed. Hence,
our first implementation step precomputes all calls to the
shortest path function Λ using Dijkstra’s algorithm (Dijk-
stra 1959). Our implementation is parallelized at the level of
the key set permutations (Line 10) to scale with all available
cores.

The characteristics of the first eight dungeons of Legend
of Zelda is listed in Table 1. Dungeons 1 and 5 are the most
difficult of the set to navigate, as each has 6 locked doors
to consider. Dungeons 4 and 7 do not have enough keys for
the number of locked doors; every other dungeon has at least
as many keys as it has locked doors. (The Legend of Zelda
allowed the player to carry excess keys from dungeons into
other dungeons.) Characteristics of the corresponding graph
for each dungeon is given in Table 2. We compute average
connectivity of a graph as the average number of fully dis-
tinct paths between any two nodes (Beineke, Oellermann,
and Pippert 2002). Dungeon 2 is the most connected with
an average connectivity of 1.47, and Dungeon 8 is the least

2https://www.rust-lang.org/
3https://bheisler.github.io/criterion.rs/book/

Table 3: Benchmarking Algorithm 1; units are in ms and
reported to three significant figures.

Dungeon Mean SD Median MAD
1 479 5.15 479 3.77
2 0.800 0.059 0.787 0.011
3 5.80 0.117 5.79 0.075
4 6.79 0.129 6.77 0.041
5 6030 25.8 6030 19.7
6 19.3 0.108 19.3 0.097
7 1.23 0.017 1.22 0.010
8 2.21 0.029 2.20 0.015

with 1.04.
Results. Table 3 shows the mean, standard deviation, me-
dian, and median absolute deviation duration of running Al-
gorithm 1 on each of the eight dungeons. As the mean and
median show a maximum difference of 2%, we can conclude
that the samples taken fall into a symmetrical distribution. A
maximum standard deviation of 7% additionally suggests a
tight normal distribution. Figure 6 compares the mean du-
rations on a log scale. We can see that Dungeons 1 and 5
clearly have the longest running times, correlating with their
greater number of locks and keys than the other dungeons.

Figure 6b shows a exponential regression fit for the mean
runtime of 15.7 e0.29x. The experimental results confirm that
the runtime of Algorithm 1 is exponentially related to the
product of the number of locks and keys.

5 Related Applications
Our solution is to the Shortest Dungeon Walk Problem is
similar to the forward algorithm for finding a shortest path
in a petri net (ÖZKAN 2016) in that it relies upon a shortest
path algorithm like Dijkstra’s or Floyd-Warhsall. We go a
step further than (ÖZKAN 2016) to show that this problem
space is NP-Complete even in our simpler context of a game
dungeon.

We envision this technique as an ideation tool for large
dungeons as we have shown that, without optimization, a
complete solution is limiting for iterative procedural gen-
eration of a dungeon For small dungeons, we have shown
there is efficacy for the algorithm as a heuristic. Our discus-
sion will focus on related applications. The Legend of Zelda:
Link’s Awakening (Nintendo 2019) offers a mode where the
user can create a dungeon from pre-built rooms and upload it
to share with other players. This algorithm offers a way dun-
geons could be grouped for presentation, but does not con-
sider a shortest walk or other heuristics in measuring good-
ness of the resulting dungeon graph.

The level generation tool OBLIGE (Apted 2017) for clas-
sic DOOM generates levels by using a layout algorithm sim-
ilar to dungeon layout, where prebuilt nodes are strung to-
gether by connections that may or may not be locked to
make a level. This algorithm could serve to help orchestrate
generation of more interesting levels where more of the level
is required to be visited. That is, a shortest walk that avoids
sections of a dungeon would influence a designer or proce-
dural generation technique to add required components to

1 2 3 4 5 6 7 8

103

104

105

106

107

Dungeon

Ti
m

e
(µ
s)

(a) Runtime of Algorithm 1 by Dungeon

10 15 20 25 30 35 40 45

103

104

105

106

107

Complexity (locks × keys)

Ti
m

e
(µ
s)

(b) Runtime of Algorithm 1 by Complexity

Figure 6: Runtime of Algorithm 1 on each of the Legend of
Zelda dungeons.

avoid ‘deserts’ in a dungeon.
A Link to the Past Randomizer (Veetorp et al. 2017) of-

fers a way to shuffle item locations around the map in The
Legend of Zelda: A Link to the Past. Important items such as
keys and unimportant items are redistributed throughout the
game such that a new path has to be taken to complete the
game. The ‘logic’ of the shuffle ensures that the game is still
completable after the shuffle. This algorithm could be used
as an input into the shuffle logic to help control where keys
are located to create interesting dungeon layouts.

6 Conclusions

This work has formalized the representation of room-based
dungeon graphs as seen in Nintendo’s Legend of Zelda.
We have proposed the Shortest Dungeon Walk Problem
in the context of this dungeon graph-based representation.
Given a dungeon graph, we have proposed an algorithm
for computing a shortest walk and showed its correctness.
Our main contribution is proving that the Shortest Dungeon
Walk Problem is solvable but NP-complete. Last, we demon-
strated the efficacy of our algorithm to a particular class of
dungeon graphs from the Legend of Zelda. That is, the per-
formance of solving the Shortest Dungeon Walk Problem
for real dungeons completes in a reasonable amount of time
despite the theoretical complexity thus facilitating shortest
walk as a heuristic for procedural generation of graph-based
dungeons.

References
Apted, A. 2017. OBLIGE Level Maker. Website. http:
//oblige.sourceforge.net/.
Beineke, L. W.; Oellermann, O. R.; and Pippert, R. E. 2002.
The average connectivity of a graph. Discrete Mathematics
252(1):31 – 45.
Bond, J. G. 2022. Introduction to Game Design, Prototyp-
ing, and Development. Addison-Wesley Professional, 3rd
edition.
Colp, Tyler. 2023. Diablo 4’s season 2 patch fixes
almost every problem i’ve had with it since launch.
https://www.pcgamer.com/diablo-4s-season-2-patch-fixes-
almost-every-problem-ive-had-with-it-since-launch/.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1997.
Introduction to Algorithms. MIT Press.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Hello Games. 2016. No man’s sky. http://www.hellogames.
org/.
Khalifa, A.; Perez-Liebana, D.; Lucas, S. M.; and Togelius,
J. 2016. General video game level generation. In Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence 2016, GECCO ’16.
Nintendo. 1986. The Legend of Zelda. Game Cartridge.
Nintendo. 2019. The Legend of Zelda: Link’s Awakening
for Nintendo Switch. Not yet published.
ÖZKAN, H. A. 2016. Shortest path algorithms for petri nets.
IU-Journal of Electrical Electronics Engineering 16(2).
Smelik, R.; Tutenel, T.; de Kraker, K. J.; and Bidarra, R.
2010. Integrating procedural generation and manual edit-
ing of virtual worlds. In Workshop on Procedural Content
Generation in Games, PCGames ’10.
Valtchanov, V., and Brown, J. A. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the
Fifth International C* Conference on Computer Science and
Software Engineering, C3S2E ’12.
Veetorp; Karkat; Christos0wen; Smallhacker; and
Dessyreqt. 2017. A Link to the Past Randomizer.
https://alttpr.com.

