
Lattice-Based Generation of Euclidean Geometry Figures

Jonathan Henning, Hanna King, Sophie Ngo, Jake Shore, Alex Gardner,
Chris Alvin, Grace Stadnyk

Furman University
Greensville, SC, USA

chris.alvin@furman.edu

Abstract
We present a user-guided method to generate geometry
figures appropriate for high school Euclidean geometry
courses: a useful starting point for an intelligent tutoring
system to provide meaningful, realistic figures for study.
We first establish that a two-dimensional geometry fig-
ure can be represented abstractly using a complete, lat-
tice we call a geometry figure lattice (GFL). As input,
we take a user-defined vector of primitive geometry
shapes and convert each into a GFL. We then exhaus-
tively combine each these ‘primitive’ GFLs into a set of
complex GFLs using a process we call gluing. We miti-
gate redundancy in GFLs by introducing a polynomial-
time algorithm for determining if two GFLs are isomor-
phic. These lattices act as a template for the second step:
instantiating GFLs into a sequence of concrete geome-
try figures. To identify figures that are structurally simi-
lar to textbook problems, we use a discriminator model
trained on a corpus of textbook geometry figures.

1 Introduction
A Euclidean geometry problem often consists of a narrative
sequence of facts alongside a corresponding figure. It was
shown in (Alvin et al. 2014) that, given a figure and a se-
quence of facts, many geometry problems can be simulta-
neously synthesized and solved using a directed hypergraph
technique. In this work, we take one step back in this syn-
thesis process and describe a de novo technique to synthe-
size two-dimensional geometry figures that are appropriate
for Euclidean geometry problems.
Representation. Each ‘primitive’ geometry shape (e.g.,
square, right triangle, etc.) corresponds to a complete geom-
etry figure lattice (GFL) encoding a topological abstraction:
right triangle T corresponds to GFL LT in Figure 1. In LT

we observe that the level 1 elements are constituent vertices
(v1, v2, and v3), rank 2 elements are sides of the triangle
(s1, s2, and s3), and triangle T is the only rank 3 element.
More interesting geometry figures consist of several primi-
tive shapes such as LS,T in Figure 1. The top element (⊤)
of LS,T , represents the entire geometry figure while the bot-
tom element of LT , ⊥, ensures a complete lattice. We now
describe our user-guided process summarized in Figure 2.

Copyright © 2024 by the authors.
This open access article is published under the Creative Commons
Attribution-NonCommercial 4.0 International License.

Figure 1: Segment gluing of two lattices: LT +LS → LS,T .

Lattice Generation. User-defined input consists of a num-
ber and type of primitive geometry shapes that will appear
in the generated geometry figures. Generating a GFL is ac-
complished by combining a set of individual GFLs, each of
which correspond directly to a shape indicated by the user.
In Figure 1, a GFL LT corresponding to right triangle T is
combined with a GFL LS corresponding to square S into
LS,T , a GFL acquired by ‘gluing’ s3 in T to s7 in S. LS,T

is one way in which these two lattices may be combined;
e.g., s1 in T may be associated with any of the ‘sides’ in S.
However, all associations of sides in T to sides in S lead to
combinatorially equivalent geometry figures, and thus iso-
morphic GFLs. Hence, identifying isomorphic GFLs mit-
igates computational redundancy during figure generation.
An important contribution of this paper is a polynomial-time

Figure 2: The geometry figure generation process.

Figure 3: Generated figures combining a square and trian-
gle: (A) non-isosceles right, (B) isosceles right, (C) isosce-
les right, (D) isosceles, (E) isosceles, and (F) equilateral.

algorithm to determine if two GFLs are isomorphic.
Textbook Figure Discriminator. Each GFL can be used
to generate many figures. However, not every GFL serves
as a template for geometry figures that would be found
in a textbook. Using a corpus of geometry textbooks, we
trained a graph neural network model to classify if a GFL is
‘textbook’-like or not. As shown in Figure 2, we take each
GFL, construct dual graphs corresponding to geometry fig-
ure templates, and pass each through the model to determine
if it conforms to a typical textbook problem.
Figure Generation. Each GFL is a template: a unique struc-
tural abstraction for a set of geometry figures. For exam-
ple, even though LS in Figure 1 corresponds to a square,
the lattice generally represents a sequence of 4 connected
segments. Thus LS may represent any standard concave
or convex quadrilateral (e.g. trapezoid, rhombus, etc.); we
restrict generated geometry shapes to be simple (not self-
intersecting or crossing). If we fix S in LS,T to be a square,
then any type of triangle can be ‘glued’ to create a valid
geometry figure. Figure 3 depicts 6 unique geometry fig-
ures in using different types of triangles; each arise from our
GFL abstraction technique and are topologically equivalent.

2 Lattice Representation
We assume standard definitions of partially ordered set
(poset: (P,≤) with P a set and ≤ a relation on P), meet (∧),
join (∨), and lattice as defined in (Grätzer 1998). A polyhe-
dron is a compact set of vertices in two dimensions.

A face of a polyhedron is a subset of vertices of the poly-
hedron that corresponds to a vertex, a segment, a polygon,

Figure 4: Point-based gluing of triangle and square.

or the empty set. The geometry figures we study are sets
of polygons concatenated in particular ways. These sets are
called polyhedral complexes.

Definition 1 (Polyhedral Complex). A polyhedral complex
∆ is a set of polyhedra that satisfies the following:
• If D ∈ ∆ and σ is a face of D, then σ ∈ ∆.
• If D,D′ ∈ ∆, then their intersection D ∩D′ is a face of

both D and D′.

This definition ensures that we are not gluing, for example,
a point from one primitive figure to the middle of a seg-
ment for another primitive figure. The final geometry figure
in Figure 1 is an example of a polyhedral complex.

Definition 2 (Face Poset). The face poset of a polyhedral
complex ∆ is the set of faces of ∆ ordered by inclusion. If a
unique top element does not exist, adding a top element, ⊤,
yields a lattice called the face lattice of ∆.

For example, in Figure 1, LS is the face lattice for the square
S. We now have the mathematical tools to define a GFL.

Definition 3 (GFL). A geometry figure lattice is the face
lattice of a two-dimensional polyhedral complex.

To ensure we generate unique lattices, we define lattice
isomorphism for use in our gluing operation.

Definition 4 (Lattice Homomorphism and Lattice Isomor-
phism). Let (L,≤) and (K,≤) be lattices, and h : L → K.
Then h is a lattice homomorphism if and only if for all
a, b ∈ L, h(a∨b) = h(a)∨h(b) and h(a∧b) = h(a)∧h(b).
A bijective lattice homomorphism is a lattice isomorphism.

3 GFL Generation with Gluing
We may construct a new polyhedral complex ∆+ from two
simpler polyhedral complexes ∆ and ∆′ by an operation
we call gluing. This operation concatenates ∆ and ∆′ either
along specified segments (as in Figure 1) or along specified
vertices (as in Figure 4). The GFL for ∆+ may be obtained
directly from ∆+, or it may be obtained from the GFLs for
∆ and ∆′ as we describe next.

Gluing GFLs. For an element e in poset (P,≤), we define
the downset of e, notationally ↓e, to be the set of all elements
in P less than e, that is, ↓e = {p | p ∈ P and p ≤ e}. As an
example, for LT in Figure 1, ↓s1 = {s1, v1, v2,⊥}.

Let (L,≤) and (R,≤) be GFLs. Suppose ℓi ∈ L and
ri ∈ R with ↓ℓi isomorphic to ↓ri (↓ℓi ∼= ↓ri) for 1 ≤
i ≤ t. The gluing operation (↓ℓ1, . . . ↓ℓt)⊎ (↓r1, . . . ↓rt) →
Res first combines each element in ↓ℓi with its isomorphic
mapping in ↓ri into respective equivalence class structures.
Let [ℓi, ri] denote the set of these equivalence classes. For
1 ≤ j ≤ s, consider elements mj of L ∪ R that are not in
any ↓ℓi or ↓ri for 1 ≤ i ≤ t as singleton elements in their
own equivalence classes [mj]. The gluing operation creates

Figure 5: Γ1 and Γ2 are not combinatorially equivalent.

Figure 6: M (Γ1). Figure 7: M2 (Γ1).

a poset consisting of the set of equivalence classes Res =
{[ℓ1, r1], . . . , [ℓt, rt], [m1], . . . , [ms]} with the order relation
x ≤ y if and only if there exists u ∈ x and v ∈ y such that
either u ≤ v in (L,≤) or u ≤ v in (R,≤).

The downset isomorphism requirement allows gluing
only along like geometric constructs: point-to-point and
segment-to-segment. For example, in Figure 1, since s1 in
LT and s4, s5, s6, s7 in LS each represent a segment, ↓s1
is isomorphic to all the corresponding segment downsets in
LS : ↓s4, ↓s5, ↓s6, and ↓s7. We observe in LS,T 3 equiva-
lence classes with more than one element from the operation
↓s1⊎↓s6 → LS,T , namely s1,6 = {s1, s6}, v2,6 = {v2, v6},
and v1,7 = {v1, v7}. It is not necessary to create an equiva-
lence class with multiple ⊥ elements.
Theorem 1. Suppose L is a GFL with ℓi ∈ L, R is a
GFL with ri ∈ R, and ↓ℓi ∼= ↓ri, where 1 ≤ i ≤ t. Suppose
(↓ℓ1, . . . ↓ℓt) ⊎ (↓r1, . . . ↓rt) → Res. The poset (Res,≤) is
a GFL.

4 GFL Isomorphism
For a geometry figure Γ, the vertex-facet incidence matrix
M(Γ) is the matrix with columns corresponding to the poly-
gons that are glued together to form Γ and rows correspond-
ing to the vertices. The matrix M (Γ) has a 1 in the ij en-
try if the vertex corresponding to the ith row is a vertex of
the polygon corresponding to the jth column. For example,
M (Γ1) (Figure 6) corresponds to figure Γ1 (Figure 5).

Recall that two polyhedral complexes are combinatorially
equivalent if they have isomorphic face lattices.
Lemma. Two geometry figures, Γ1 and Γ2 are combinato-
rially equivalent if and only if M(Γ1) can be obtained from
M(Γ2) by a sequence of row and column swaps.

Example. Our goal is to use Algorithm 1 to transform
M (Γ1) (Figure 6) into its standard form, M̂ (Γ1) (Fig-
ure 11).

Let M be a matrix, r be a row, and c and d are columns.
• Let rs(r) be the row sum of r and cs(c) be the col-

umn sum of c.
• If rs(r) = k, let u(r) be the k−tuple whose ith entry

gives the column sum of the column containing the
ith 1 in r. This is the vector of column sums.

• If rs(r) = k, let p(r) be the k−tuple whose ith entry
gives the index of the column containing the ith 1 in
r. This is the vector of column indices.

• If cs(c) = k, let v(c) be the k−tuple whose ith entry
gives the row sum of the row containing the ith 1 in
c. We will call this vector the vector of row sums.

• For any vector w, define a group of tied columns, as
Aw = {c : v(c) = w}. For any Aw with |Aw| = 1,
we will say Aw is a trivial group of tied columns.

• Let s(c, d) be the number of rows that have a 1 in
both column c and column d.

• For A = {a0, a1, . . .} an index-based ordered,
proper subset of the columns of M and d a column
of M not in A, we define the similarity vector as
qA(d) = (s(ai, d))

|A|−1
i=0 . We define q{}(c) = (0)

for any column c.
• S is an ordered set of columns induced by the relative

order on the corresponding columns in the matrix.

Figure 8: Definitions for Algorithm 1.

Figure 9: M3 (Γ1) =
M4 (Γ1).

Figure 10: M5 (Γ1).

Steps 1 and 2. We sort rows by row sums and columns by
column sums; order of these steps is arbitrary. We observe
the result of M (Γ1) → M1 (Γ1) → M2 (Γ1) in Figure 7.

Step 3. We establish groups of columns each having the
same column sum. For each group having column sum k,
and each column within this group, construct the vector of
row sums. For a column within this group, this is a vector
of length k whose ith entry gives the row sum of the row
containing the ith 1 in the column. We then sort the columns
within this group by their vector of row sums in weakly de-
creasing lexicographic (dictionary) order. For example, con-
sider M2(Γ1) in Figure 7. The vector of row sums for the
column ‘2’ is given by v(‘2’) = (3, 3, 3, 2) since rows ‘c’,
‘e’, and ‘f ’ have sum 3 and row ‘b’ has sum 2. Similarly,
v(‘3’) = v(‘5’) = (3, 3, 3, 2). No column swaps occur since
each vector of row sums is equal.

Algorithm 1: Vertex-facet incidence matrix standardization:
M (Γ) → M̂ (Γ)

M (Γ): vertex-facet incidence matrix for geometry figure Γ.
1. Sort the rows of M (Γ) by row sum in weakly decreasing

order to yield M1(Γ).
2. Sort the columns of M1 (Γ) by column sum in weakly

decreasing order to yield M2(Γ).
3. In M2 (Γ), for all possible k, sort the set of columns each

having column sum k by v(c) in weakly decreasing lexi-
cographic (dictionary) order. This yields M3 (Γ).

4. In M3 (Γ), for all possible k, sort the set of rows each
having row sum k by u(r) in weakly decreasing lexico-
graphic order. This yields M4 (Γ).

5. Initialize S = {c : c ∈ Aw, |Aw| = 1 for some w}.
while not all columns of M4 (Γ) are in S:
letm be the set of columns in M4 (Γ) not in S

for each group of tied columns Awi
in m (taken

left-to-right):
for all c ∈ Awi

, establish a lexicographically
decreasing order of all columns in Awi using
qS(c); call this order O

add to S, at the same indices of Awi in M4 (Γ), all
columns in O up to, but excluding, the first
lexicographic equality of qS(c) for all c ∈ O

If S was not changed by any tied column group, add
the left-most column c of the first group of tied
columns to S at the same index as c in M4 (Γ)

6. In M5(Γ), for all possible k−tuples v, sort the set of rows
each having u(r) = v by the vector p(r) in increasing
lexicographic order. This yields M̂(Γ).

Step 4. Similar to Step 3, our goal is to sort rows within
groups of rows having the same row sum. We do so by
sorting by the vector of column sums in weakly decreas-
ing lexicographic order. Consider M2 (Γ1) in Figure 7. The
vector of column sums for the row labeled f is given by
u(‘f ’) = (4, 4, 4) since columns ‘2’, ‘3’, and ‘5’ all have col-
umn sum 4. We thus move row f to be first as all other rows
with row sum 3 (rows ‘c’, ‘e’, ‘i’) have u(‘c’) = u(‘e’) =
u(‘i’) = (4, 4, 3) and (4, 4, 4) > (4, 4, 3) in lexicographic
order. The order of Steps 3 and 4 is arbitrary.

Step 5. This step reorders columns by iteratively con-
structing an ordered set S using similarity vectors. It is im-
portant to note that when a column is added to S, the column
is in its final, indexed position. In this step of the algorithm,
we compute similarity scores using S; in particular, we cal-
culate qS(c) where c will be a column in M4 (Γ1) that is not
in S.
S is initialized with trivial groups of tied columns. In

Figure 9, there are no trivial groups of tied columns so we
have S = {?, ?, ?, ?, ?, ?} (a ‘?’ indicate columns to be pop-
ulated in future iterations) although we consider S to be
empty. There are two groups of (nontrivial) tied columns

Figure 11: M6 (Γ1) =

M̂ (Γ1). Figure 12: M̂ (Γ2).

Aw1
= {‘2’, ‘3’, ‘5’} and Aw2

= {‘1’, ‘4’, ‘6’}, where
w1 = (3, 3, 3, 2) and w2 = (3, 2, 1). For our first step, as
S = ∅, qS(c) = (0) for all c in M4 (Γ1). We take, by de-
fault, the leftmost column not in S, ‘2’, and add it to S in its
same index position, yielding S = {‘2’, ?, ?, ?, ?, ?}.

In the next pass, we modify Aw1 to remove column ‘2’
since it was added to S, leaving us with Aw1 = {‘3’, ‘5’}.
Sequentially, with each group of tied columns, we compute
similarity vectors for columns not in S. Thus, for our up-
dated Aw1

we have qS(‘3’) = (2) = qS(‘5’). As these vec-
tors are lexicographically equal, no changes are made to S.
We then compute similarity vectors for the next group of
tied columns (excluding those in S), Aw2

= {‘1’, ‘4’, ‘6’}.
The similarity vectors are qS(‘1’) = (2), qS(‘4’) = (1),
and qS(‘6’) = (0). As these similarity vectors are in lexi-
cographically decreasing order (with no ties), we add each
column to S at the same index at which they occur in Fig-
ure 9. We now have S = {‘2’, ?, ?, ‘1’, ‘4’, ‘6’}

For our final pass, we have one group of tied columns
not in S: Aw1

= {‘3’, ‘5’}. We compute similarity scores
for these columns: qS(‘3’) = (2, 0, 2, 1) and qS(‘5’) =
(2, 1, 0, 2). Since qS(‘3’) is lexicographically less than
qS(‘5’), we insert these columns into S so that ‘5’ occurs
first. We conclude this step of Algorithm 1 since all columns
of M4 (Γ1) are in S = {‘2’, ‘5’, ‘3’, ‘1’, ‘4’, ‘6’}. We reorder
the columns of M4(Γ) so they coincide with the order given
by S. This gives M5(Γ).

Step 6. The final step orders all rows with a given vector
of column sums in increasing lexicographic order based on
tuples of column indices. Consider Figure 10. With indexing
starting at 0, row ‘c’ has index tuple (0, 2, 4) while ‘e’ has
index tuple (0, 1, 3). Since (0, 1, 3) < (0, 2, 4), we move
‘e’ before ‘c’ in M̂ (Γ1). Similarly, row ‘h’ with index tuple
(1, 5) is shifted before row ‘g’ with index tuple (2, 4). The
result is M̂ (Γ1) in Figure 11.

Conclusion of Example. We conclude that Γ1 and Γ2 in
Figure 5 are not combinatorially equivalent as M̂ (Γ1) ̸=
M̂ (Γ2) and thus their GFLs are distinct.

5 Filtering Toward Textbook Figures
Figure Representation. Each geometry figure is encoded
as a dual graph where each node is labeled with the specific
primitive shape, except a ‘universe’ node corresponding to

Figure 13: A dual graph
for a figure generated us-
ing the GFL correspond-
ing to Γ2 from Figure 5.

Figure 14: Number of
primitive shapes (horiz.
axis) by subset size (verti-
cal axis) of corpus figures.

Figure 15: Occurrence rate of primitive shapes in our corpus.

the rest of the plane exterior to the figure. This representation
can be observed in Figure 13: Γ2 (Figure 5) is encoded with
6 labeled face nodes along with a universal face node.

Textbook Figures. Our corpus was created by an exhaus-
tive analysis of 8 textbooks (Jurgensen, Brown, and Jur-
gensen 1951; Larson, Boswell, and Stiff 2004; Rhoad, Mi-
lauskas, and Whipple 1991; Gantert 2007; Michael 2002;
Posamentier and Salkind 1996; Larson et al. 2009; Cord
2022). Each of the 118 figures has a unique dual graph and
may contain any subset of the primitive shapes in Figure 15.

The most common textbook figure consists of a single
primitive shape; many of these arise when introducing fun-
damental properties of primitive shapes (e.g., opposing par-
allel sides in a parallelogram). Comparing textbooks chapter
by chapter (e.g., triangle chapters of all texts), we observe
common figures. Such figures are so common when intro-
ducing similar content, we might refer to them as canonical,
pedagogical figures. As an example, the most common fig-
ure among textbooks is two right triangles sharing a com-
mon side. This figure appeared 401 times compared to the
next most repeated figure occurring 203 times.

We observe in Figure 14 many figures are built from 1, 2,
or 4 primitive shapes. Triangles are also often used to con-
struct figures: it is common for a quadrilateral to be con-
structed with 2 or 4 triangles. Figures with 4 or more primi-
tive shapes are more likely to be unique to a textbook.

Discriminator model. We created a discriminator model1
(Figure 17) based on our corpus of textbook figures to fil-
ter for textbook-like figures. For training, we used the 118

1https://github.com/hannaking/Summer-Research-2023

Figure 16: Occurrence rate of primitive shapes in figures se-
lected as textbook-like over 100000 random dual graphs.

Figure 17: Architecture of the textbook figure discriminator.

textbook dual graphs as positive examples and a corre-
sponding 118 unique dual graphs generated randomly as
negative examples. The random search function in the
keras tuner library was used to tune sizes and activa-
tion functions of each layer, dropout, and learning rate. The
model achieved 62% accuracy on the textbook graphs, 83%
accuracy on the random non-textbook graphs and 75% ac-
curacy under 10-fold stratified cross-validation with 5 rep-
etitions. We attribute our lower accuracies to small sam-
ple size and general lack of uniqueness in textbook figures
(see Section 7). Using a quantile-quantile, we compared the
distribution of frequencies of primitive shapes from text-
book problems (Figure 15) to the distributions of primitive
shapes from randomly generated figures (Figure 16). With
r2 = 0.986 we are confident the model can discriminate for
figures found in a textbook.

6 Geometry Figure Generation
For a GFL L, we generate candidate geometry figures by
taking each shape in sequence at rank 3 in L and projecting
that shape onto the Cartesian plane according to the prop-
erties of the shape. All figures begin at the origin and, if a
distance is not known, 1 is used. If the user requests 1 square
and 1 triangle but does not specify the type of triangle, our
algorithm generates all options as shown in Figure 3 using
all possible triangles; similarly for quadrilaterals.

As an example of our process, we generate the geometry
figure with square S and right triangle T from Figure 1. As
input, a user indicates a square and an isosceles right triangle
(with no other primitive shapes). We begin with the square.
Since the projection is empty, the origin is assigned as a ver-
tex of the square S with default side length 1. The remaining
3 vertices are determined according to the geometric prop-

Table 1: Results of generated textbook-like figures satisfying
user stated queries.

erties of a square. We then glue the triangle T along a side
of S. Since 2 vertices of T are defined, the final point is de-
termined according to the rules of a 45 − 45 − 90 triangle;
there are 3 possible coordinate pairs for the last point of T
since the ‘glued’ side may be the hypotenuse or a leg of T .
To generate other primitive shapes, we use the following:

1. Default length of 1 when needed,
2. Rules of geometry for a shape (e.g., if two vertices are

known for a right triangle a third point can be computed),
3. Standard angles of the unit circle (i.e., 30◦, 45◦, and 60◦)

when a choice is required, and
4. The growing set of fixed vertices in the plane (i.e., the

first shape has no fixed vertices, but as more shapes are
projected onto the plane, more vertices become fixed).

7 Experimental Analyses
Analysis: Discriminating for numbers of primitive
shapes. We compared the distributions of the number of
primitive shapes per figure of the textbook versus textbook-
like figures. Both distributions follow an exponential decay
pattern as can be observed in Figure 14. The Mann-Whitney
U Test returned a p-value of 0.0000021 indicating the distri-
butions are likely the same. This serves as validation of the
discriminator model’s ability to recognize figures consistent
with textbook problems in terms of the number of shapes.
Analysis: Shape-shape edges. Factoring out biases from
shape counts and sizes of different shapes, we ran an exper-
iment to determine the likelihood of a generated textbook-
like figure having two shapes sharing a side. We found fig-
ures are more likely to have shared sides between shapes
with different numbers of sides. For example, there is a
54.1% chance that an equilateral triangle shares a side with a
regular pentagon, but only a 25.1% chance that an isosceles
triangle shares a side with an equilateral triangle.
Experiment: Targeted figure generation. The strength of
our proposed pipeline for figure generation is that any re-
quest from a user is satisfied. Table 1 serves as a sample of
the efficacy of our pipeline. One of the 53932 figures gener-
ated from a query consisting of ‘triangle, triangle’ is shown
as the top-middle figure in Figure 18. In general, our tech-
nique generates few GFLs constrained by isomorphism, but
is still able to generate a significant number of dual graphs

Figure 18: Sample generated, textbook-like figures.

from GFLs, and even more textbook-like figures satisfying
user constraints.

8 Related Works
Many synthesis approaches attempt to generate struc-
tures and solids in three-dimensions. Scan2Mesh (Dai and
Nießner 2019) is a generative neural network that takes
3D objects as input and outputs a mesh. By contrast our
work seeks to generate geometry figures with specific prop-
erties: right angles, isosceles triangles, etc. By contrast,
our approach is query-based (not random): if a user re-
quests a particular set of polygons, they will receive a figure
with those shapes. Another notable technique is proposed
in (Simonovsky and Komodakis 2018) and implemented as
GraphVAE. GraphVAE performs a topological generation
approach for small graphs, a technique that was applied to
2D-based molecule generation. Our lattice-based approach
guarantees mathematically sound geometry figures whereas
GraphVAE is a probabilistic approach that does not, for ex-
ample, generate valid molecules.

Geometrically, the closest works to ours are a sequence of
works from Alvin, et al. that generate and solve geometry
proof problems (Alvin et al. 2014) and shaded area prob-
lems (Alvin et al. 2017a; 2017b). In particular, (Alvin et al.
2017a) attempts to combine shapes with computable areas
into an interesting geometry figure. This technique works
within the confines of an area-based template: e.g., α − β
refers to a shape β within a shape α. By contrast, our figure
synthesis technique constructs a cohesive, abstract structure
and instantiates that structure based on user query. The goal
of (Alvin et al. 2017a) is for interesting figures for a partic-
ular class of problems (shaded area problems) whereas our
technique is more general.

9 Conclusions
We have described a parameterized technique to generate
Euclidean geometry figures consistent with textbooks. From
a user-defined query stating constituent geometry shapes,
we generate an abstract topological structure, geometry fig-
ure lattice, and ensuring isomorphism among GFLs with a
polynomial time algorithm. We then use a graph neural net-
work discriminator to filter toward textbook-quality figures.
Last, we generate Euclidean geometry figures appropriate
for high school geometry by instantiating a geometry figure
lattice. We demonstrated the utility and efficacy of our ap-
proach with sample user queries and believe this technique
can be leveraged to generate realistic figures for study in an
intelligent tutoring system.

References
Alvin, C.; Gulwani, S.; Majumdar, R.; and Mukhopadhyay,
S. 2014. Synthesis of geometry proof problems. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 245–252.
Alvin, C.; Gulwani, S.; Majumdar, R.; and Mukhopadhyay,
S. 2017a. Synthesis of problems for shaded area geometry
reasoning. In Artificial Intelligence in Education - 18th In-
ternational Conference, AIED 2017, Wuhan, China, June 28
- July 1, 2017, Proceedings, volume 10331 of Lecture Notes
in Computer Science, 455–458. Springer.
Alvin, C.; Gulwani, S.; Majumdar, R.; and Mukhopadhyay,
S. 2017b. Synthesis of solutions for shaded area geome-
try problems. In Proceedings of the Thirtieth International
Florida Artificial Intelligence Research Society Conference,
FLAIRS 2017, Marco Island, Florida, USA, May 22-24,
2017., 14–19.
Cord. 2022. Geometry:Mathematics In Context. Cord, third
edition.
Dai, A., and Nießner, M. 2019. Scan2mesh: From un-
structured range scans to 3d meshes. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, 5574–5583. Com-
puter Vision Foundation / IEEE.
Gantert, A. X. 2007. Amsco’s Geometry. Professional
BookDistributors, Inc.
Grätzer, G. 1998. General Lattice Theory. Birkhauser.
Jurgensen, R. C.; Brown, R. G.; and Jurgensen, J. W. 1951.
Geometry. Houghton Mifflin Company.
Larson, R.; Boswell, L.; Kanold, T. D.; and Stiff, L. 2009.
Holt McDougal Larson Geometry: Student Edition 2011.
HOLT MCDOUGAL, first edition.
Larson, R.; Boswell, L.; and Stiff, L. 2004. Geometry,
Grades 9-12: Mcdougal Littell High School Math (McDou-
gal Littell High Geometry). McDougal Littell/Houghton
Mifflin Company, tenth edition.
Michael, S. 2002. Discovering Geometry: An Investigative
Approach. Key Curriculum Press, third edition.
Posamentier, A. S., and Salkind, C. T. 1996. Challeng-
ing Problems in Geometry (Dover Books on Mathematics).
Dover Publications, second edition.
Rhoad, R.; Milauskas, G.; and Whipple, R. 1991. Geometry
for Enjoyment and Challenge. McDougal Littell.
Simonovsky, M., and Komodakis, N. 2018. Graphvae: To-
wards generation of small graphs using variational autoen-
coders. In Kurková, V.; Manolopoulos, Y.; Hammer, B.;
Iliadis, L. S.; and Maglogiannis, I., eds., Artificial Neural
Networks and Machine Learning - ICANN 2018 - 27th Inter-
national Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018, Proceedings, Part I, volume
11139 of Lecture Notes in Computer Science, 412–422.
Springer.

