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Abstract
Ensemble modeling has been widely used to solve com-
plex problems as it helps to improve overall perfor-
mance and generalization. In this paper, we propose a
novel TemporalAugmenter approach based on ensem-
ble modeling for augmenting the temporal information
capturing for long-term and short-term dependencies in
data integration of two variations of recurrent neural
networks in two learning streams to obtain the maxi-
mum possible temporal extraction. Thus, the proposed
model augments the extraction of temporal dependen-
cies. In addition, the proposed approach reduces the pre-
processing and prior stages of feature extraction, which
reduces the required energy to process the models built
upon the proposed TemporalAugmenter approach, con-
tributing towards green AI. Moreover, the proposed
model can be simply integrated into various domains
including industrial, medical, and human-computer in-
teraction applications. Our proposed approach empiri-
cally evaluated the speech emotion recognition, electro-
cardiogram signal, and signal quality examination tasks
as three different signals with varying complexity and
different temporal dependency features.

Ensemble modeling is one of the solutions to overcome the
model overfitting and improve the model performance by in-
tegrating multiple individual learning steams to create a ro-
bust and accurate predictive model, especially for complex
tasks (Ganaie et al. 2022; Sagi and Rokach 2018). The en-
semble modeling concept improves the overall model gen-
eralization, robustness, and stability and improves the over-
all model accuracy (Arpit et al. 2022; Ortega, Cabañas, and
Masegosa 2022; Zhang, Cheng, and Hsieh 2019). Ensem-
ble modeling has been applied in various applications in-
cluding time series classification, speech recognition, im-
age classification (Karim, Majumdar, and Darabi 2019;
Kourentzes, Barrow, and Crone 2014; Elsayed, Maida, and
Bayoumi 2018a), natural language processing (Sangamn-
erkar et al. 2020; Liu et al. 2019; Jia, Liang, and Liang
2023), events detection and recognition in videos (Ade-
wopo and Elsayed 2023; Yu et al. 2020; Xu et al. 2018;
Nanni et al. 2014), anomaly detection (Han, Chen, and
Liu 2021; Zhao, Mehrotra, and Mohan 2015; Vanerio and
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Casas 2017), security of IoT devices (Tsogbaatar et al. 2021;
Elsayed, ElSayed, and Bayoumi 2023; Alotaibi and Ilyas
2023), and medical applications (West et al. 2005; Priyad-
harshini et al. 2023; Liu et al. 2020).

Several ensemble modeling techniques in deep learning
include boosting, bagging, stacking, negative correlation-
based deep ensemble method, explicit and implicit ensem-
bles, homogeneous and heterogeneous ensembles, and de-
cision fusion strategies (Ganaie et al. 2022). The boost-
ing technique is based on training the models sequentially,
where each subsequent model focuses on solving the weak-
nesses of the previous model. Then, the highest weights are
assigned to instances that were misclassified in the previ-
ous stages. That enables the model to learn from its mis-
takes, which helps to gradually improve the overall accu-
racy (Drucker et al. 1994; Ferreira and Figueiredo 2012;
Mosavi et al. 2021). The bagging technique is based on
training multiple models on subsets of the training data in
parallel. Then, the final prediction is performed via aggre-
gating all the models’ predictions by taking a vote or the
average (Altman and Krzywinski 2017; Galar et al. 2011).
The stacking technique is based on combining multiple base
model predictions by using an additional model called a
meta-learner that is responsible for learning how to perform
the best prediction based on the predictions of the multi-
ple base models (Brownlee 2021). The negative correlation-
based deep ensemble technique is based on training models
that are negatively correlated by training the models in a way
that aims to make different predictions, leading to promot-
ing diverse predictions and reducing redundancy (Ganaie et
al. 2022). The explicit technique combines multiple distinct
models and performs the training explicitly (Ganaie et al.
2022). The implicit technique uses model uncertainty esti-
mation within a single model or a dropout to create an im-
plicit ensemble effect on the entire model (Seijo-Pardo et
al. 2017). The homogeneous technique combines multiple
models of the same type to enhance a prediction concept.
The heterogeneous technique consists of different models in
the concept to enhance the diverse learning strategy (Seijo-
Pardo et al. 2017). The decision fusion technique is based
on using multiple models to combine their final predic-
tion decisions based on simple or complex methodology
such as averaging, voting, or weights assigned to individ-
ual models’s predictions (Ponti Jr 2011; Ganaie et al. 2022;



Figure 1: The proposed ensemble TemporalAugmenter approach for both long-term and short-term dependencies capturing in
temporal data.

Hassan and Verma 2007).
There are different types of data depending on the primary

source of data capturing, including discrete and sequen-
tial datasets (Dietterich 2002; Chmielewski and Grzymala-
Busse 1996). The sequential data can be categorized into
temporal data, where data points are collected, observed,
and recorded at the same specific time intervals (e.g., videos,
voice recording, time series, biological signal), and sequen-
tial (non-temporal) data that involves sequences where the
order is significant. However, the observation time is not
considered (e.g., text data, ordered events, and DNA se-
quences). The temporal data is complex due to the tempo-
ral information and the point-in-time information that the
learning model must capture to perform the required task
on the data. Thus, not all traditional learning models can
solve temporal data based problems and tasks. Recurrent
neural based architectures are the most suitable for capturing
the temporal dependency information carried in the tempo-
ral data. There are several recurrent neural network based
architectures such as the recurrent neural network (RNN)
long short-term memory (LSTM) and its different vari-
ants (Greff et al. 2017; Elsayed, ElSayed, and Maida 2022;
Gers, Schraudolph, and Schmidhuber 2002), the gated recur-
rent unit (GRU) and different variants (Chung et al. 2014;
Dey and Salem 2017), the LiteLSTM (Elsayed, ElSayed,
and Maida 2023), and the minimal gated unit MGU (Zhou
et al. 2016). Each recurrent based network has its strengthes
in capturing the long-term or short-term temporal depen-
dencies. However, with the complex data, they require ad-
ditional preprocessing or support for feature extracting to
enhance the overall performance of capturing the point-to-
time information.

Thus, in this paper, we propose a novel ensemble ap-
proach for augmenting the temporal information in tempo-
ral data based long-term and short-term dependencies cap-
turing architectures: long short-term memory (LSTM) and
the gated recurrent unit (GRU) in two streams that are ca-
pable of improving the overall performance. Moreover, we
performed an empirical investigation of the influence of the
convolutional neural network as a feature extractor prior to
short-term temporal dependencies capturing architecture on
improving the model performance; in addition, it eliminates
the requirement of the data preprocessing stage. Finally, we
employed the proposed approach on three different temporal
tasks from different data sources and varied complexity, in-
cluding speech emotion recognition, electrocardiogram clas-

sification, and radar signal quality classification, to analyze
and validate the proposed approach concepts.

Temporal Augmenter Ensemble Approach
The proposed temporal augmenter approach is shown in
Fig. 1 (Elsayed, ElSayed, and Maida 2022). The proposed
approach consists of two stacked streams. The first stream
employs a recurrent neural network architecture that is capa-
ble of extracting and learning the long-term temporal depen-
dencies in the data. The second stream employs the recurrent
neural network architecture that is capable of extracting and
learning the short-term dependencies in the data. Adding one
convolutional layer before each recurrent stream would im-
prove the spatial features from the data, contributing to im-
proving the overall approach performance at both temporal
and spatial dependencies extraction and learning. Integrat-
ing the convolutional layer recurrent architectures has shown
empirically and overall higher performance in several 1D
applications including (Elsayed et al. 2022; Pan et al. 2020;
Sajjad et al. 2020; Elsayed, ElSayed, and Bayoumi 2023). In
this proposed approach, we empirically found that the opti-
mal integration between the temporal dependencies extrac-
tion in the recurrent model and the convolution neural net-
work (CNN) can be found while using the CNN as only one
layer for extracting features prior to the recurrent network.
Thus, the proposed approach reduces the required computa-
tions for the preprocessing of the signal due to the capability
of the one-layer CNN to extract sufficient features, eliminat-
ing the requirements of signal preprocessing.

For the long-term dependency learning stream, in this ap-
proach, we employ the long short-term memory (LSTM) ar-
chitecture as the main component for long-term dependency
learning (Greff et al. 2016). The memory cell of the LSTM
provided the capability of memorizing the long-term depen-
dencies due to maintaining the long-term dependencies in-
formation in the learning stream. By reflecting the forget
gate in the memory cell, the memory maintains the time de-
pendencies that have long-term effects through the time in
the memory, leading the LSTM to maintain a robust memo-
rization of long-term dependencies from the data.

For the short-term dependencies learning stream, we se-
lected the gated recurrent unit (GRU) as the primary com-
ponent to learn the short-term dependencies in the data. The
GRU is a smaller recurrent neural network architecture that
consists of two gates: update z and reset gates r (Greff et al.
2017). The main concept was to share the weights between



Figure 2: The proposed model based on the TemporalAug-
menter appoach implementation layers and their orders.

two gates at the LSTM (input and forget) gates into one up-
date gate and remove the memory cell to produce a smaller
budget recurrent architecture that can be employed in appli-
cations where the sequences are small (e.g., short-term de-
pendencies) (Chung et al. 2014). In addition, the GRU elim-
inates the output squashing function and the constant error
carrocel (CEC) compared to the LSTM (Chung et al. 2014;
Elsayed, ElSayed, and Maida 2023). The reset gate in the
GRU maps the output gate of the LSTM. Thus, the GRU re-
quires less budget to implement compared to the LSTM, and
it is capable of learning short-term dependencies efficiently.
Thus, the GRU has shown significant results and outper-
formed the LSTM in several applications where the time de-
pendency in the data is short-term, such as (Shen et al. 2018;
Elsayed, Maida, and Bayoumi 2019; Gao, Zheng, and Guo
2020; Yiğit et al. 2021; Elsayed, Zaghloul, and Li 2021;
Golmohammadi et al. 2017; Wang et al. 2021; Elsayed, El-
Sayed, and Bayoumi 2023; Jakubik 2018; Al-Shabandar et
al. 2021).

Models that are based on our proposed TemporalAug-
menter approach aim to employ both the LSTM as the long-
term dependencies learning architecture with the GRU as a
short-term dependencies learner into a model that is capable
of capturing the long-term dependencies in temporal data
as well as the short-term dependencies. Thus, the proposed
TemporalAugmenter approach-based model can exceed the
state-of-the-art models in multiple applications with differ-
ent temporal data sources.

Figure 3: The proposed TemporalAugmenter approach train-
ing versus validation accuracy (left) and loss (right) dia-
grams over the TESS dataset.

Table 1: The proposed model overall statistics for speech
emotion recognition from the TESS dataset.

Merits Value
95% CI (0.9783,0.9967)
Accuracy 99.64%
F1 Score 0.9875
False Negative Rate 0.0125
False Positive Rate 0.00208
True Negative Rate 0.99792
True Positve Rate 0.9875
Kappa 0.9854
Kappa 95% CI (0.97465,0.99615)
Kappa Standard Error 0.00548
Total params 8,027,819
Trainable params 8,027,819
Non-trainable params 0

Experiments Setup
In our experiment, we targeted three different tasks: speech
emotion recognition, electrocardiogram (ECG or EKG)
classification, and radar signal quality classification tasks.
These tasks are based on three different source of temporal
data that vary in complexity and features behavior through
time.

In our experiments, we implemented the models based
on the proposed TemporalAugmenter approach. Figure 2
shows the model layers and order, which has been imple-
mented based on the proposed TemporalAugmenter ensem-
ble approach. The major differences between the experi-
ments are in the number of epochs, batch size, optimization
function, input size, and the number of classification cate-
gories. For the implementation, we used a computer with
an Intel(R) Core(TM) i-9 CPU @ 3.00 GHz processor with
32-GB memory and NVIDIA GeForce RTX 2080 Ti graph-
ics card. For the implementation, we used Tensorflow 2.4.0,
Numpy 1.19.5, Pandas 1.2.4, Librosa 0.9.1, and Python 3.3.8
on a Windows 10 OS computer.

Task I: Speech Emotion Recognition
Dataset Description
In this task, we used audio-based speech emotion datasets,
and we implemented the models to use the audio data di-



Table 2: The proposed model statistics over the seven speech emotion categories of the TESS dataset.

Statistical Emotion Category
Analysis Angry Disgust Fear Happiness Surprise Sadness Neutral
Accuracy 100% 99.643% 99.464% 99.821% 99.643% 99.286% 99.643%
F1 Score 1.0 0.9878 0.97902 0.99355 0.9875 0.97826 0.98571
AUC 1.0 0.99286 0.97945 0.99359 0.99792 0.99131 0.99184
Error rate 0.0 0.00357 0.00536 0.00179 0.00357 0.00714 0.00357
False Negative Rate 0.0 0.0122 0.0411 0.01282 0.0 0.01099 0.01429
False Positive Rate 0.0 0.00209 0.0 0.0 0.00416 0.0064 0.00204
Specificity 1.0 0.99791 1.0 1.0 0.99584 0.9936 0.99796
Sensitivity 1.0 0.9878 0.9589 0.98718 1.0 0.98901 0.98571

Table 3: Comparison between the proposed model and the
state-of-the-art models for speech emotion recognition over
the TESS dataset.

Model Method Acc.
(Venkataramanan and Ra-
jamohan 2019)

Combining 2D CNN and Global
Avg. Pooling

66.00%

(Sundarprasad 2018) Combining PCA, SVM, Mel-
Frequeny, and Cepstrum Fea-
tures

90.00%

(Krishnan, Joseph Raj, and
Rajangam 2021)

SoA Classsifier and Entropy
Features from Principle IMF
modes

93.30%

(Lotfidereshgi and Gournay
2017)

Liquid State Machine 82.35%

(Zhang, Zhao, and Lei 2013) Kernel Isomap 80.85%
(Zhang, Zhao, and Lei 2013) PCA 72.35%
(Bhargava and Polzehl 2013) Artificial Neural Nets 80.600%
(Bhargava and Polzehl 2013) SVM 80.270%
(Elsayed et al. 2022) 1DCNN and GRU 94.285%
(Parry et al. 2019) CNN and LSTM 49.48%
(Zhao, Mao, and Chen 2019) 2D-CNN and LSTM 70.00%
Our TemporalAugmenter 98.75%

rectly without any mapping to spectrograms or assigning
images or videos with the data. Thus, the proposed Tem-
poralAugmenter approach aims to capture the temporal and
spatial features from the spoken speech to determine the in-
dividual’s emotions during the speech.

We used the Toronto Emotional Speech Set (TESS)
dataset benchmark (Dupuis and Pichora-Fuller 2010). This
data was recorded in the Toronto area by two actresses who
have English as their first spoken language. This dataset con-
sists of 2800 stimuli that represent seven different emotion
categories. These emotions are anger, disgust, fear, happi-
ness, surprise/pleasant, sadness, and neutral. The major ad-
vantage of this dataset is that the dataset is balanced between
the number of stimuli among each of the seven classes.

Results and Analysis
In this experiment, the data was split to train, validate, and
test with a ratio of 70%:10%:20%, respectively. The data has
been scaled using standardscaler (Nabi and Nabi 2016). The
short-term dependency stream 1D CNN that has 128 kernels
of size one and the he uniform function function as the ker-

Figure 4: The proposed TemporalAugmenter approach train-
ing versus validation accuracy (left) and loss (right) dia-
grams over the MIT-BIH dataset.

Table 4: The proposed model overall statistics for MIT-BIH
dataset.

Merits Value
95% CI (0.98293,0.98619)
Accuracy 98.456%
F1 Score 0.98456
False Negative Rate 0.01544
False Positive Rate 0.00208
True Negative Rate 0.99614
True Positve Rate 0.00386
Kappa 0.98456
Kappa 95% CI (0.94317,0.95404)
Kappa Standard Error 0.00277
Total params 52,073
Trainable params 52,073
Non-trainable params 0

nel initializer. Then, the GRU number of units is set to 10,
with glorot uniform function as the kernel initializer. The
long-term dependency stream started with a similar 1D CNN
followed by the LSTM that has ten units, and the kernel ini-
tialization function is glorot uniform and orthogonal func-
tion as the recurrent initializer. Then, the two streams con-
catenated, followed by two dense layers of 64 and 32, units
with the rectified linear unit (ReLU) (Teh and Hinton 2000;
Elsayed, Maida, and Bayoumi 2018b) as the activation func-
tions. For training the model, the batch size has been set to
32 and the number of epochs to 20. RMSProp has been used
as the optimization function with learning rate lr = 0.001,
momentum = 0.0, and ϵ = 1e− 07. The categorical cross-



Table 5: The proposed model statistics over the five categories of the MIT-BIH dataset.

Statistical ECG Category
Analysis N S V F Q
Accuracy 98.726% 99.287% 99.415% 99.694% 99.79%
F1 Score 0.99232 0.84942 0.95586 0.77888 0.9856
AUC 0.97164 0.89475 0.97698 0.86367 0.98913
Error rate 0.01274 0.00713 0.00585 0.00306 0.0021
False Negative Rate 0.00453 0.20863 0.04282 0.2716 0.02114
False Positive Rate 0.0522 0.00187 0.00323 0.00106 0.00059
Specificity 0.9478 0.99813 0.99677 0.99894 0.99941
Sensitivity 0.99547 0.79137 0.95718 0.7284 0.97886

Table 6: Comparison between the proposed model and the
state-of-the-art models for MIT-BIH dataset.

Model Method Acc.
(Martis et al. 2013a) DWT and SVM 93.8%
(Elsayed and Zaghloul 2020) DWT and Random Forest 94.6%
(Asl, Setarehdan, and Mo-
hebbi 2008)

DWT and LDA and RR 94.2%

(Osowski and Linh 2001) Hybrid fuzzy NN 96.1%
(Acharya et al. 2017) CNN and Augmentation 93.5%
(Kachuee, Fazeli, and Sar-
rafzadeh 2018)

Deep residual CNN 93.4%

(Elsayed and Zaghloul 2020) ELM 96.4%
(Martis et al. 2013b) SVM with RBF Kernel 93.5%
(Zhou, Jin, and Dong 2017) CNN and LSTM 98.03%
(Acharya et al. 2017) Daubechies Wavelet 94.3%
Our TemporalAugmenter 98.45%

Figure 5: The proposed TemporalAugmenter approach train-
ing versus validation accuracy (left) and loss (right) dia-
grams over the Radar Ionosphere Depletion dataset.

entropy is set as the loss function. Max pooling and dropouts
have been applied in both the long-term and short-term de-
pendency streams. Fig. 3 shows the proposed model train-
ing versus validation accuracy and loss. Table 1 shows the
proposed model’s overall statistics over the TESS dataset.
Table 2 shows the statistics of the model over each of the
seven emotions, where (OP) and (AUC) are the areas under
the Receiver Operating Characteristic (ROC) curve. Table 3
compares the proposed model and the state-of-the-art speech
emotion recognition models over the TESS dataset.

Table 7: The proposed model overall statistics for the Radar
Ionosphere Depletion dataset.

Merits Value
95% CI (0.91095, 1.0)
Accuracy 95.775%
F1 Score 0.95775
False Negative Rate 0.04225
False Positive Rate 0.04225
True Negative Rate 0.95775
True Positve Rate 0.95775
Kappa 0.90839
Kappa 95% CI (0.80693,1.00)
Kappa Standard Error 0.05176
Total params 21,214
Trainable params 21,214
Non-trainable params 0

Table 8: The proposed model statistics over the two cate-
gories of the Radar Ionosphere Depletion dataset.

Statistical Radar Signal Category
Analysis Class 0 Class 1
Accuracy 0.95775 0.95775
F1 Score 0.96703 0.94118
AUC 0.94444 0.94444
Error rate 0.04225 0.04225
False Negative Rate 0.0 0.11111
False Positive Rate 0.11111 0.0
Specificity 0.88889 1.0
Sensitivity 1.0 0.88889

Task II: Electrocardiogram Classification
Dataset Description
In this task, we aim to empirically evaluate the Tempo-
ralAugmenter concept of the electrocardiogram (ECG) clas-
sification task as an example of a biological signal that car-
ries information about heart functionality. In this experi-
ment, we used the MIT-BIH dataset benchmark collected by
the BIH Laboratory (Moody and Mark 2001). The ECG sig-
nals were recorded from 25 women between 32 to 89 years
old and 22 women aged between 23 to 89 years old. The
dataset consists of 109,446 data samples. The dataset con-
sists of five different categories of the ECG recorded signal,



Table 9: Comparison between the proposed model and
the state-of-the-art models for Radar Ionosphere Depletion
dataset.

Model Method Acc.
(Basheer et al. 2024) AADS 76.13%
(Basheer et al. 2024) Streaming TEDA 52.38%
(Basheer et al. 2024) MAD 22.35%
(Basheer et al. 2024) xStream 21.38%
(Basheer et al. 2024) RRCF 12.65%
(Sigillito et al. 1989) linear perceptron 90.67%
(Sigillito et al. 1989) MLFN 83.8%
Our TemporalAugmenter 95.775%

including normal heart beat (N), supraventricular premature
beat (S), premature ventricular contraction (V), fusion of
paced and normal beat (F), and unclassifiable beat (Q).

Results and Analysis
For the experiment, we divided into training, validation, and
testing by the ratio 60%, 20%, and 20%, respectively. The
batch size is set to 128, and the number of epochs to 50.
The first ratio of dropout layers at the long-term and short-
term steams was set to 50%, maintaining the rest at the
30% ratio. Adam optimizer has been used with learning rate
lr = 0.001, and ϵ = 1e − 07. The proposed model training
versus validation accuracy and loss diagrams are shown in
Figure 4. Table 4 shows the proposed model’s overall statis-
tics over the MIT-BIH dataset. Table 5 shows the statistics
of the model over each of the five ECG categories. Table 6
compares the proposed model and the state-of-the-art clas-
sification models over the MIT-BIH dataset.

Task III: Radar Signal Quality Classification
Dataset Description
In this experiment, we used the Ionosphere Depletion dataset
benchmark collected by a Goose Bay system to evaluate the
Ionosphere. The dataset consists of 351 data samples. The
pulse numbers of the Good Bay system were 17. Each data
sample in the dataset is described by two attributes per pulse
number, corresponding to the complex values returned by
the function resulting from the complex electromagnetic sig-
nal. Thus, the total number of attributes is 34. The data con-
sists of two categories, bad signal and good signal, which are
decoded to zero and one in the implementation. The dataset
is unbalanced.

Results and Analysis
In this experiment, we split the data to train, validate, and
test the dataset with ratios 60%, 20%, and 20%, respectively.
The Adam optimizer has been used with a learning rate
lr = 0.001, and ϵ = 1e−07. The number of epochs is set to
100, and the batch size to 128. The proposed model overall
statistics for the Radar Ionosphere Depletion dataset exper-
iment are shown in Table 7. The proposed model statistics
over the two categories of the Radar Ionosphere Depletion
dataset are shown in Table 8. Table 9 compares the proposed

model and the state-of-the-art Radar Ionosphere Depletion
dataset classification models. Our proposed model exceeds
the state-of-the-art models’ accuracy performance.

Conclusion and Social Impact
Manipulating temporal data requires robust methodologies
that can capture both temporal and point-to-time informa-
tion. Several applications are based on classifying temporal
data, such as biosignals classification for diagnostics, speech
emotion recognition, stock market prediction, energy con-
sumption, time series anomaly detection, and radar signal
classification. This paper proposed a simple ensemble based
approach, TemporalAugmenter, based on integrating long-
term and short-term dependency learning streams to capture
precise temporal dependencies in temporal data. In addition,
we found empirically that one convolutional layer prior to
a recurrent architecture can help enhance the model per-
formance. Furthermore, the proposed approach can be used
directly without extracting additional features, preprocess-
ing, or converting the signal to spectrograms, which reduces
the power and energy required for model implementation,
contributing towards green AI and reducing CO2 footprint.
Thus, models that are based on the proposed TemporalAug-
menter approach can be implemented within different tem-
poral data based application domains.
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