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Abstract

The elevating effect of the curse of dimensionality
in count data has made clustering a challenging task.
This paper solves this by adopting the concept of fea-
ture saliency as a feature selection method in the con-
text of using the Multinomial Nested Dirichlet Mix-
ture (MNDM). The MNDM is a generalization of
the Dirichlet Compound Mixture (DCM) that suffers
from several limitations. The model learning is accom-
plished through the expectation-maximization method.
The Minimum Message Length criterion is used to si-
multaneously determine the best number of components
in the mixture with the updated selected features. At the
price of convergence times, the results show better per-
formance through different metrics, as the model aims
to select the salient features and tune away the non-
salient anomalistic features.

Introduction
The dramatic increase in data and the forecasted higher pace
of its increment have made it more challenging to cluster the
different populations and extract patterns accordingly. Con-
sequently, with the abundance of highly dimensional chal-
lenging datasets, it has been observed that many features in
high-dimensional representations tend to be less effective or
nonsalient (Guyon and Elisseeff, 2003). Despite the cluster-
ing powerfulness in the context of machine learning, its per-
formance can be drastically affected by redundant or outly-
ing features (Bdiri et al., 2016; Bouguila, 2010; Bouguila
and Ziou, 2012; Bouguila et al., 2012; Liu et al., 2011).

A very well-known example of high-dimensional data is
count data. Count data is a representation of frequencies for
the occurrence of each feature (Harris et al., 2014). It has
gained scholars’ attention over the past decades due to its
wide appearance in many data collections, such as the words
in a document, the visual keywords in images, and the taxa
in microbial data. However, it usually appears in overly-
sparsed vectors where many indices are zeros as a result of
feature absences (Dhillon and Modha, 2001). This, in turn,
hinders the clustering process, resulting in numerical diver-
gence. The multinomial distribution has shown a competing
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performance over many other distributions (Bouguila, 2007,
2009; Bouguila and Ziou, 2004; Najar and Bouguila, 2022).

Burstiness is another challenge in count data clustering
that is associated with the Multinomial assumption (Naı̈ve
Bayes assumption) (McCallum et al., 1998). The burstiness
problem is linked to the correlation between the first and sec-
ond appearance of a rare word1 or visual word that is failed
to be captured by the Multinomial distribution (Church and
Gale, 1995). Therefore, clustering techniques of count data
have explored prior distribution that characterizes the pa-
rameters of the Multinomial distribution, such as the Dirich-
let distribution. The Dirichlet distribution has been an ef-
fective prior to the Multinomial distribution, resulting in a
Multinomial Dirichlet distribution or the DCM (Mosimann,
1962). Dirichlet distribution has attracted a lot of attention
due to its multinomial conjugacy and its powerful adaptation
to small-sized datasets as part of statistical models (Bouguila
and Ziou, 2005a,b, 2006; Oboh and Bouguila, 2017). How-
ever, the Dirichlet distribution suffers from its negative co-
variance matrix and its direct proportionality between its
mean and variance (Alkhawaja and Bouguila, 2023).

The Multinomial Nested Dirichlet distribution (MNDD)
is a generalization that was first introduced in (Null, 2008),
which solves the earlier-mentioned limitations of the Dirich-
let distribution. It is based on the Nested Dirichlet distri-
bution (NDD) that generalized the Dirichlet distribution by
adding a hierarchical structure. Indeed, the NDD is a special
case of the generalized Dirichlet distribution (Connor and
Mosimann, 1969), where its hierarchy is limited to two fea-
tures per node (Minka, 1999). Figure 1 illustrates the hierar-
chical difference between the later distributions. In this pa-
per, the Multinomial Nested Dirichlet Mixture (MNDM) is
adopted in modeling visual data using Bag of Visual Words
(BoVW) (Null, 2008).

Moreover, in endeavors to tackle the curse of dimension-
ality and the sparseness in count data, the concept of fea-
ture saliency for the high-dimensional observational vectors
is adopted. The paradigm of feature saliencies is based on
extracting the most effective unique features in all the com-
ponents, where the number of components is determined by
the Minimum Message Length criterion since the number

1The likelihood of a specific word to appear twice (if it appears
once in a document) is higher than its first appearance.



Figure 1: Tree structure for Dirichlet, generalized Dirichlet, and Nested Dirichlet distributions.

of components and the optimal selected features are interre-
lated (Hong et al., 2019).

Therefore, in this paper, the main contributions are:

1. Perform clustering using the MNDM for count data.

2. Simultaneous feature selection based on the feature
saliency concept.

3. Using MML to determine the number of components si-
multaneously.

The rest of the paper is divided into the Related Works
in Section 2, followed by the proposed method in Section 3.
Section 4 shows the derivations of the MNDM and its learn-
ing. Section 5 shows the obtained results. Finally, Section 6
concludes this paper.

Related works
Due to their importance in the era of rapid information ex-
pansion, dimensionality reduction methods have been ex-
tensively explored and introduced in many fields, including
sensory-robotics (including localization tasks) (Panteleris
and Argyros, 2022), computer vision (Wang et al., 2022),
and medical fields (Remeseiro and Bolon-Canedo, 2019).
Feature extraction and feature selection are two main ap-
proaches that help reduce the number of features and obtain
explainable and effective features. Feature extraction meth-
ods perform dimensionality reduction faster at the cost of
information loss and less interpretability in the retrieved fea-
tures (Solorio-Fernández et al., 2022). The examples of fea-
ture extraction methods are many, such as principal compo-
nent analysis (Zhang et al., 2017), linear discriminant anal-
ysis (Xanthopoulos et al., 2013), partial least square (Mar-
quetti et al., 2016), t-distributed stochastic neighbor embed-
ding (Sharma et al., 2021), and latent Dirichlet allocation in
topics models (Blei et al., 2003).

Feature selection methods aim at approving selected fea-
tures within a dataset that can be interpretable. The unsuper-
vised feature selection methods have three main categories:
filter/ranking, wrapper, and wrapper-embedded/hybrid tech-
niques (Hong et al., 2019). Filter methods refine the features
based on their property through distance, entropy, and de-
pendency metrics, resulting in multiple ranks for the features
(Solorio-Fernández et al., 2022). This, in turn, makes it in-
dependent of the components of the learning model, result-
ing in a faster evaluation. However, this comes at the cost of
having redundant features or equally contributing features if

they have the same rank. Filter methods were first introduced
in (Dash et al., 1997), where the authors used the entropy
measure to select features sequentially in a reversed manner
through the so-called sequential backward selection. There-
fore, a lower entropy results in more well-defined compo-
nents. Other techniques include the textual TF-IDF measure
(Bouillot et al., 2013), mutual information (Kraskov et al.,
2004), and laplacian score (He et al., 2005).

Unlike filter methods, wrapper-embedded is based on si-
multaneous unsupervised clustering and feature selection.
Therefore, the independence assumption is dropped, leading
to a better understanding of the salient features of the cur-
rent clusters (Hong et al., 2019). The wrapper approaches
are a sub-division of wrapper-embedded approaches, where
the clustering and feature selection are accomplished in
two steps. Therefore, wrapper-embedded techniques are
sometimes referred to as hybrid techniques. The hybrid
techniques combine the two benefits of filter and wrap-
per techniques through faster convergence and higher ac-
curacy. Since wrapper techniques are computationally de-
manding, the convergence time is higher than the filter ones
(Boutemedjet et al., 2009). Examples of wrapper techniques
include scatter class separability (Dy and Brodley, 2004),
and backward elimination (Law et al., 2002), where the au-
thors estranged features based on their class conditional de-
pendence iteratively. Hybrid methods have recently gained
higher interest, as they are adopted in the context of mixture
models as in (Boutemedjet et al., 2009; Law et al., 2004;
Zamzami and Bouguila, 2022), where the number of com-
ponents is estimated through model selection criteria.

Indeed, model selection is pivotal for the selected fea-
tures, and the overall model performance, as it optimizes
the model towards the best number of clusters to repre-
sent the data Mashrgy et al. (2014). Model selection cri-
teria include stochastic and deterministic methods. Deter-
ministic methods have shown cost efficiency and relatively
good accuracy levels. Among multiple deterministic meth-
ods such as Akaike Information Criterion (AIC) (Sakamoto
et al., 1986), Bayesian Information Criterion (BIC) (Weak-
liem, 1999), and Minimum Description Length (MDL) (Bar-
ron et al., 1998), Minimum Message Length (MML) has
shown a remarkable performance in determining the num-
ber of clusters, comparatively. Therefore, in this work, si-
multaneous unsupervised clustering is implemented along
with feature selection using the MNDM and the concept of
the salient features, respectively.



The proposed method

The MNDD offers multiple advantages thanks to its conju-
gacy and its generalized form over the Multinomial Dirich-
let distribution. Indeed, the MNDD, as mentioned earlier,
is based on the NDD, which is a generalization over the
Dirichlet distribution, in which multiple nestings/nodes are
introduced. These nestings can be at different levels to
build the so-called Dirichlet tree. The NDD was first in-
troduced by (Dennis III, 1991), and was further revisited
by (Minka, 1999), and (Null, 2008). The two forms are
similar, with a difference in the probability density func-
tion (PDF) representation, as was further investigated by
(Alkhawaja and Bouguila, 2023). In this paper, we are us-
ing the form introduced by (Null, 2008), due to the ob-
tained advantages introduced in (Alkhawaja and Bouguila,
2023). Therefore, for an (ith) observation, a D + K di-
mensional vector X⃗i = (Xi1, . . . , Xij , . . . , Xi(D+K)) fol-
lows a Multinomial distribution with the parameters vec-
tor P⃗ = (P1, . . . , Pj , . . . , PD+K), with the following NDD
PDF:

P (P⃗ | α⃗) =
∏D

j=1 Pj
αj−1 ∏K

k=1 PD+k
αD+k−Āk∏K

k=0 B(Ak)
(1)

where α⃗ = (α1, . . . , αj , . . . , αD+K) is the parameters vec-
tor for the Dirichlet distribution, (Āk) is the sum of the (Ak)
vector underneath each (k) nesting. The authors in (Null,
2009) showcased that a nesting tree can represent any tree
structure using only two nestings at each level K = D − 2.
Where, K and D are the total nesting and nested variables,
respectively. Therefore, the NDD can represent the GDD
and any other tree structure using two parameters at each
nesting (k). These parameters are ζk = (αk, βk). Therefore,
following to the derivations in (Null, 2008), the PDF of the
MNDD, for a (kth) nesting, is written as:

P (X⃗ik | ζk) =
Γ(Xik1

+Xik2
+ 1)

Γ(Xik1
+ 1)Γ(Xik2

+ 1)
×

Γ(αk +Xik1)Γ(βk +Xik2)Γ(αk + βk)

Γ(αk)Γ(βk)Γ(αk + βk +Xik1
+Xik2

)

(2)

where X⃗ik = (Xik1
, Xik2

). Note that this is scalable to en-
capsulate more than two variables, replacing the Beta dis-
tribution with an independent Dirichlet distribution for the
targetted (kth) node. Due to the existence of the Gamma
(Γ) function in equation (2), the calculations become in-
tractable, leading to approximations that might cause bias-
ing to the estimator (Null, 2008). Despite the abundance of
methods that were proposed to solve this issue, the authors
in (Null, 2008), followed an efficient re-parameterization
technique introduced by (Paul et al., 2005), and general-
ized the form by replacing the variables ζk = (αk, βk) by
Ωk = (πk, ϕk), which are the mean and the dispersion factor
(dispersion among the features), respectively. Then, by us-
ing the integer factorial function generalization (Bhargava,
2000), (Xk − 1)! = Γ(Xk), the PDF of the MNDD is writ-

ten as:

P (X⃗k | Ωk) =
(Xk1

+Xk2
)!

(Xk1)!(Xk2)!
×∏Xk1

−1
r=0 (rϕk + πk)

∏Xk2
−1

r=0 (rϕk + 1− πk)∏Yk−1
r=0 1 + rϕk

(3)

where Yk = Xk1
+Xk2

, and

πk =
αk

αk + βk
, ϕk =

1

αk + βk
(4)

Note that each nesting (k) is independent of the other at the
same level, enabling their PDF to be written independently.

Implmenting the mixture model
The implementation of the model is divided into three parts.
In the first part, the model is built with the augmentation
of salient features constraint, followed by the estimation of
the parameters in the second part. Finally, determining the
number of components is illustrated in the third part.

Feature saliency augmentation
As the mixture model is a collection of components, the
MNDM model generalizes equation (3) by combining the
prior probability vector P⃗ = (P (1), . . . , P (m), . . . , P (M))
for M components and N observations, yielding:

P (X | θ) =
N∏
i=1

M∑
m=1

P (X⃗i | Ω⃗m)P (m) (5)

where X = {X⃗1, . . . , X⃗N} and θ = ⟨Ω = {Ω⃗1, . . . , Ω⃗m =

(Ωm1, . . . ,Ωmk, . . . ,ΩmK), . . . , Ω⃗M}, P⃗ ⟩.
By assuming conditional independence among the fea-

tures, based on each mth component, equation (5) becomes:

P (X | θ) =
N∏
i=1

M∑
m=1

P (m)

K∏
k=1

P (X⃗ik | Ωmk) (6)

The feature saliency concept is based on imposing a bi-
nary feature relevance parameter. This parameter is se-
lected to be correlated with the current component as in
(Zamzami and Bouguila, 2022). Therefore, the binary fea-
ture relevance vector is λ⃗m = (λm1, . . . , λmk, . . . , λmK)
indicates the pertinence of each kth feature nesting
to the mth component. Therefore, by setting θ′ =

⟨θ, λ = {λ⃗1, . . . , λ⃗m . . . , λ⃗M},Ω′ = {Ω′
1, . . . ,Ω

′
k =

(π′
k, ϕ

′
k), . . . ,Ω

′
K)}⟩, an irrelevant/nonsalient feature distri-

bution Q(X⃗ik | Ω′
k) is added, as shown below:

P (X | θ′) =
N∏
i=1

M∑
m=1

P (m)

K∏
k=1

(P (X⃗ik | Ωmk))
λmk

× (Q(X⃗ik | Ω′
k))

(1−λmk)

(7)

Note that, the relevance vector determines the relevance
of a certain nesting, not a certain feature, as the two



features at each nesting are negatively correlated in the
case of beta-binomial nestings. Afterward, following the
binary feature relevance parameter, a probability rele-
vance parameter is introduced ρ = {ρ⃗1, . . . , ρ⃗m =
(ρm1, . . . , ρmk, . . . , ρmK), . . . , ρ⃗M}, which determines the
saliency of a certain feature and it is used as a measure to
keep or drop the feature. Therefore, equation 7 is reformu-
lated to the generative model equation (8) below:

P (X | Θ) =

N∏
i=1

M∑
m=1

P (m)

K∏
k=1

[(ρmk)P (X⃗ik | Ωmk)]
λmk

× [(1− ρmk)Q(X⃗ik | Ω′
k)]

(1−λmk)

(8)

where Θ = ⟨θ′, ρ⟩. From the equation above, two main ben-
efits can be observed:

1. The number of degrees of freedom is doubled, which
gives it more flexibility and helps avoid over-fitting.

2. The salient features are dependent on the components
through the generation of the components and the features
consequently.

Parameters estimation
With the high amount of parameters, Table 1 shows all the
parameters that are required to be estimated, where the first
three are the latent parameters.

The parameters are estimated through the Expectation-
Maximization (EM) method (Dempster et al., 1977), which
has shown wide usage due to its effectiveness in estimating
the parameters. The EM method comprises two main steps:
the E-step and the M-step. Using the log-likelihood equation
written below, the E-step and M-step are iteratively expect-
ing the posterior of the latent parameters and maximizing
the parameters, as in (Boutemedjet et al., 2009).

L(X ,Z | Θ) =

N∑
i=1

M∑
m=1

zim log [P (m)

×
K∏

k=1

(ρmk)P (X⃗ik | Ωmk))
λmk

× ((1− ρmk)Q(X⃗ik | Ω′
k))

(1−λmk)
]

(9)

As the value of λmk ∈ {0, 1}, it is intuitive to replace it with
a posterior probability conditioned on the mth component.
Therefore, following to uimk and vimk in Table 1, and by
using the logarithmic properties, the log-likelihood can be
rewritten as:

L(X ,Z | Θ) =

N∑
i=1

M∑
m=1

zim [log[P (m)]

+

K∑
k=1

uimk log[ρmk]

+ uimk log[P (X⃗ik | Ωmk)]

+ vimk log[(1− ρmk)]

+ vimk log[Q(X⃗ik | Ω′
k)]

]
(10)

E-step:

zim =
P (X⃗i | Θm)∑M

m=1 P (X⃗i | Θm)
(11)

uimk =
ρmkP (Xik | Ωmk)

P (X⃗i | Θm)
(12)

vimk = zim − uimk (13)
P (m) follows the two following verification rules:

M∑
m=1

P (m) = 1, 0 < P (m) < 1, m = (1, . . . ,M) (14)

Therefore, M-step:

P (m) =

∑N
i=1 zim
N

(15)

ρmk =

∑N
i=1 uimk

N
(16)

πmk =

∑N
i=1 uimkxik1∑N

i=1 uimk

(17)

ϕmk =

∑N
i=1 uimk(xik1 − πmk)

2∑N
i=1 uimk

(18)

π′
k =

∑N
i=1

∑M
m=1 vimkxik1∑N

i=1

∑M
m=1 vimk

(19)

ϕ′
k =

∑N
i=1

∑M
m=1 vimk(xik1 − πmk)

2∑N
i=1

∑M
m=1 vimk

(20)

It is noteworthy that, the value of ρmk is dependent on
the number of components, therefore, it is eventually aver-
aged throughout all the determined number of components
through the MML, as will be shown next.

Model selection
The minimum message length is written as
MML(X ,Θ) = − log h(Θ)− logP (X | Θ)

− 1

2
log |F (Θ)|+ Np

2
(1 + log(κNp

))
(21)

where Np = M(1 + 2K) and the value of κNp
is chosen

based on the value Np through a look-up table (Lyu et al.,
2022). Moreover, h is the prior distribution, and F (Θ) is
the Fisher information matrix (FIM), which can be approxi-
mated as the negative expected value of the Hessian matrix,
as shown below:

F (Θ) = −E[(2k)2 logP (X | Θ)] (22)
As mentioned in (Law et al., 2004), the FIM is intractable
analytically. Therefore, an approximation is used through a
block-diagonal matrix of size (M + 2K(1 + MR + S)),
where R and S are the sums of salient (M × K) and non-
salient feature (K) distribution parameters, respectively.
Therefore, to find the MML, the following equation is used:

MML(X ,Θ) = argmin
θ

[
M + 2K

2
logN − logP (X | Θ)

+
R

2

M∑
m=1

K∑
k=1

logNP (m)ρmk +
S

2

M∑
m=1

K∑
k=1

logN(1− ρmk)

]
(23)



Table 1: The complete set of Parameters.
Parameter Size Description

zim N ×M P (zim = 1 | X⃗i)

uimk N ×M ×K P (zim = 1, λmk = 1 | X⃗i)

vimk N ×M ×K P (zim = 1, λmk = 0 | X⃗i)
P (m) M prior probability for mth component
ρmk M ×K feature relevance probability
πmk M ×K MNDD salient features mean
ϕmk M ×K MNDD salient features dispersion
π′
k K MNDD non-salient features mean

ϕ′
k K MNDD non-salient features dispersion

Experimental results
The novel model was assessed by three visual datasets,
namely Natural Scenes (NS2), KTH-TIPS (KT3), and
MMI4, that are represented using BoVW, in addition to
the UCI handwritten digits dataset (UCI HW5). The lat-
ter dataset has 64-dimensional observation vectors that are
originally clustered from (32 × 32) bitmap pixels to a 64-
dimensional (8 × 8) vector for each digit by calculating the
sum of black pixels in a (4 × 4) window. Table 2 shows the
details of all datasets used and the associated tree structure.
Despite the visual nature of the selected datasets, the intro-
duced model is applicable using Bag of Words (BoW) in-
stead of BoVW.

Table 3 shows the obtained results of the enhanced
MNDM with feature saliences (E-MNDM) in comparison
with other models, namely, the Gaussian Mixture Model
(GMM), Multinomial Mixture (MM), DCM, Multinomial
Generalized Dirichlet Mixture (MGDM), and MNDM using
the PDF in equation 3. The results are compared through
three factors: precision, recall, and convergence time. It is
noteworthy that, the relatively small selected size of the
dataset observations testifies to the powerfulness of the listed
statistical models, which outperform deep learning models
as shown in (Alkhawaja and Bouguila, 2023). As can be in-
ferred from the table, despite the superiority of the MNDM
over most of the models, the E-MNDM is able to achieve re-
sults better than the MNDM by 5% in terms of precision and
recall, approximately. This is due to the consideration of the
relevant features (salient features) per component. The num-
ber of components has a lower and an upper bound for each
dataset with a range of (−2/ + 2) of the actual number of
components. Therefore, the approximated number of com-
ponents shown in the last column of Table 3 (Approx. M)
shows the best MML (minimum) value, where each result is
obtained through equation (23).

It is noteworthy that, the tree structure is crucial for the
overall performance. This criticality can be inferred in the

2https://www.kaggle.com/datasets/zaiyankhan/15scene-dataset
3https://www.csc.kth.se/cvap/databases/kth-

tips/download.html
4https://mmifacedb.eu/
5https://archive.ics.uci.edu/dataset/80/optical+ recogni-

tion+of+handwritten+digits

UCI HW dataset, where the MGDM is able to achieve better
results than the MNDM and E-MNDM. Therefore, this cre-
ates an opportunity for potential enhancement to the model
through the NDD tree structure optimization.

Moreover, the use of salient features naturally optimizes
the determination of the number of clusters, as the features
have a more solid connection to their associated component.
Therefore, a simultaneous enhancement is achieved for the
feature selection and the determination of the number of
components, enhancing overall accuracy.

Conclusion
This work introduces a framework to exploit the advan-
tages of the NDD and the MNDD by utilizing the concept
of salient features and simultaneous determination of the
number of components. As the NDD offers a hierarchical
structure that enables more generalization to the covariance
matrix, it can model the data at higher accuracies than the
Dirichlet and the generalized Dirichlet distributions. There-
fore, the augmentation of feature saliency assists the compo-
nent determination criterion (MML) and creates a relation-
ship between the features and the associated components.
This framework was applied to four datasets, and its excel-
lence was shown through different metrics in comparison
with other competing models.

The use of BoW or BoVW is enough to validate the per-
formance of the introduced model. However, despite their
effectiveness, they lack semantic representation of the words
and the visual keywords. On the contrary, feature represen-
tation methods such as Word embeddings or Word2Vec are
capable of embedding word semantics, which could be an-
other advancement to the obtained performance.

The promising results of this work introduce potential
improvements that address the estimation method and the
tree structure. According to (Boutemedjet et al., 2009), the
minorization-maximization framework could lead to better
results for feature selection. Moreover, as concluded from
the results section, the tree structure is critical for the data
representation, as it is essential for the feature relevance
judgment (Null, 2008).
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José Francisco Martı́nez-Trinidad. A survey on feature
selection methods for mixed data. Artif. Intell. Rev.,
55(4):2821–2846, apr 2022. ISSN 0269-2821. doi:
10.1007/s10462-021-10072-6.

Fengyun Wang, Jinshan Pan, Shoukun Xu, and Jinhui
Tang. Learning discriminative cross-modality fea-
tures for rgb-d saliency detection. IEEE Transac-
tions on Image Processing, 31:1285–1297, 2022. doi:
10.1109/TIP.2022.3140606.

David L. Weakliem. A critique of the bayesian information
criterion for model selection. Sociological Methods & Re-
search, 27(3):359–397, 1999.

Petros Xanthopoulos, Panos M Pardalos, Theodore B
Trafalis, Petros Xanthopoulos, Panos M Pardalos, and
Theodore B Trafalis. Linear discriminant analysis. Ro-
bust data mining, pages 27–33, 2013.

Nuha Zamzami and Nizar Bouguila. A novel minoriza-
tion–maximization framework for simultaneous feature
selection and clustering of high-dimensional count data.
Pattern Analysis and Applications, 26, 07 2022. doi:
10.1007/s10044-022-01094-z.

Rui Zhang, Feiping Nie, and Xuelong Li. Auto-weighted
two-dimensional principal component analysis with ro-
bust outliers. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
6065–6069, 2017. doi: 10.1109/ICASSP.2017.7953321.


