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Abstract
Topic modeling has become a fundamental technique
for uncovering latent thematic structures within large
collections of textual data. However, conventional mod-
els often struggle to capture the burstiness of top-
ics. This characteristic, where the occurrence of a
word increases its likelihood of subsequent appear-
ances in a document, is fundamental in natural lan-
guage processing. To address this gap, we introduce
a novel topic modeling framework, integrating Beta-
Liouville and Dirichlet Compound Multinomial distri-
butions. Our approach, named Beta-Liouville Dirich-
let Compound Multinomial Latent Dirichlet Allocation
(BLDCMLDA), is designed to specifically model word
burstiness and support a wide range of adaptable topic
proportion patterns. Through experiments on diverse
benchmark text datasets, the BLDCMLDA model has
demonstrated superior performance over conventional
models. Our promising results in terms of perplexity
and coherence scores demonstrate the effectiveness of
BLDCMLDA in capturing the nuances of word usage
dynamics in natural language.

Introduction
In the modern era, a vast amount of data is generated across
various fields. when properly handled, this data is a valu-
able source of information (Bouguila 2007). Topic model-
ing has emerged as a crucial tool for efficiently processing
large text datasets. They are adept at uncovering key themes
across numerous documents (Bakhtiari and Bouguila 2014a)
(Bakhtiari and Bouguila 2014b). Models like Latent Dirich-
let Allocation (Blei, Ng, and Jordan 2003) identify word
clusters, or topics, that frequently appear together, offering a
deeper understanding of document content beyond just sin-
gle words. This method enables a more profound semantic
interpretation by focusing on the overarching topics within
documents.

The concept of ”Burstiness” in language, initially iden-
tified by Church, Gale, and Katz (Doyle and Elkan 2009)
(Madsen, Kauchak, and Elkan 2005), is inherent in docu-
ment analysis and topic modeling. It describes the tendency
of a rare word to reappear multiple times in a document once
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it occurs. Beyond text, burstiness is also observed in fields
like finance and computer vision (Blei and Lafferty 2007).
It is important to distinguish between word burstiness (i.e.,
the recurrence of specific words in a document) and topic
burstiness (i.e., the repetition of topics within a document
corpus), as both types play a vital role in analyzing docu-
ments and their structure in topic modeling.

Traditional topic models (Blei, Ng, and Jordan 2003)
(Das, Zaheer, and Dyer 2015), such as those based on
Dirichlet distribution, use basic statistical methods to model
word distributions across topics. However, they often strug-
gle to accurately identify new topics, leading to vague or
ambiguous interpretations. This issue is mainly due to the
inflexibility of their statistical foundations, which are not
suited to the dynamic nature of topic trends. As a result,
these models are less effective in representing topic bursti-
ness, often producing less clear topics.

In this paper, we introduce the Beta-Liouville Dirichlet
Compound Multinomial Latent Dirichlet Allocation (BLD-
CMLDA) model. This novel topic modeling approach in-
tegrates the Beta-Liouville distribution (Bouguila 2012a)
(Fan and Bouguila 2015) to overcome the limitations of the
Dirichlet distribution priors by allowing for greater flexibil-
ity in covariance structure, crucial for capturing the nuances
of word burstiness. Our model enhances the adaptability in
modeling topic proportions, paving the way for more accu-
rate and coherent topic modeling.

Our contributions to this paper are as follows:
• We propose the BLDCMLDA model, an innovative ap-

proach to topic modeling that effectively addresses both
word and topic burstiness.

• We demonstrate the superiority of the Beta-Liouville pri-
ors in capturing the complex dynamics of topic burstiness,
leading to more accurate topic modeling.

• Through extensive experiments on various text datasets,
we show that the BLDCMLDA model achieves better se-
mantic coherence and lower perplexity scores compared
to traditional models.

• We present comprehensive analyses indicating that BLD-
CMLDA outperforms existing models in predicting text
samples across different topic settings.
The paper is structured as follows: Section reviews rel-

evant literature. Section details the BLDCMLDA model.



Section discusses our experimental results, and Section
concludes the paper and explores future research directions.

Background and Related Works
Topic modeling (Blei 2012; Vayansky and Kumar 2020), a
technique rooted in generative probabilistic modeling (Liu
et al. 2016), is used for identifying hidden topics within tex-
tual documents. This method relies on a probabilistic re-
lationship between observable variables and latent param-
eters for unsupervised analysis of large datasets. It began
with Latent Semantic Indexing/Analysis (LSI/LSA) (Lan-
dauer and Dumais 2008) which used singular value decom-
position for more effective data compression, while Proba-
bilistic LSI/LSA (pLSI/pLSA) by Hofman (Hofmann 2017)
introduced a probabilistic approach, enhancing data reduc-
tion but with potential overfitting issues. Modern topic mod-
els largely employ Bayesian modeling to discover latent pat-
terns in text data (Blei, Ng, and Jordan 2003).

In natural language processing, topic burstiness refers to
the sudden and notable increase in certain terms or topics
within a text corpus. Analyzing topic burstiness helps in
tracking information flow, spotting trends, and understand-
ing topic evolution over time in large datasets. Identifying
these bursts and their timing can shed light on public dis-
course, reveal key events, highlight emerging trends, and
enhance our grasp of temporal dynamics. This analysis is
particularly useful in areas like social media analytics, news
monitoring, and historical document examination, where de-
tecting topical bursts offers critical context for timely and
informed decision-making (Kleinberg 2002).

Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003) is a method used to uncover hidden patterns within
text corpora and it assumes that each document comprises a
mixture of topics. Document generation involves first select-
ing topics and their corresponding word distributions, and
secondly, choosing words from these distributions to form a
varied document. The LDA model relies on two key Dirich-
let hyperparameters, α and β, which shape its generative
process. α influences the topic mixture in documents (θ),
with higher values promoting topic similarity and lower ones
enhancing diversity. Conversely, β affects the word distri-
bution across topics (ϕ), where a higher β encourages topic
similarity, and a lower β leads to more diverse word patterns.
Despite not accounting for word burstiness, LDA adequately
represents documents through topic distributions (θ), use-
ful for document classification, similarity analysis, and other
textual analysis applications(Das, Zaheer, and Dyer 2015).

Dirichlet Compound Multinomial
The Dirichlet Compound Multinomial (DCM) model is de-
signed for text analysis, emphasizing the capture of word
burstiness in documents. Differing from Latent Dirichlet Al-
location and its related models, DCM focuses on word dis-
tribution within each document rather than on topics.

DCM creates each document by choosing a specific multi-
nomial distribution from a common Dirichlet distribution,

resulting in documents with words from a distribution that
represents a part of a larger topic. This differs from LDA’s
approach to associating subtopics with documents.

DCM’s ability to vary between multinomial and Dirichlet
parameters helps it adjust for burstiness, lessening the im-
pact of repeated words as Dirichlet parameters shift. While
DCM excels in representing a primary topic with various
subtopics, it may not perform as well with documents con-
taining multiple distinct topics. Nevertheless, DCM offers
insightful perspectives on word distribution and frequency
in documents where word burstiness is prevalent (Huang et
al. 2020).

Beta-Liouville
The Beta-Liouville (BL) distribution, part of the Liouville
family of distributions, offers a flexible framework for count
data modeling. It is defined in a multidimensional setting
with positive parameters and is characterized by a generative
density function. This distribution stands out for its ability
to model a wider range of covariance structures, both pos-
itive and negative, unlike the more restrictive Dirichlet dis-
tribution. Its flexibility makes it well-suited for applications
that involve counting data with complex underlying patterns,
such as text categorization or image classification. The Beta-
Liouville distribution’s unique properties allow it to effec-
tively capture the nuances in data, offering a more accurate
and versatile approach to modeling count data compared to
traditional methods (Bouguila 2011) (Luo et al. 2023).

Proposed Model
In this section, we will present the mathematical structure
and essential aspects of the BLDCMLDA model, includ-
ing a detailed explanation of the generative process and the
method for learning the model parameters.

Model Definition
The proposed BLDCMLDA model has a solid probabilis-
tic foundation, integrating flexible priors including Beta-
Liouville and Dirichlet Compound Multinomial. This com-
bination creates a versatile approach for modeling topic
burstiness specific to individual documents. The structure of
the BLDCMLDA model is depicted in Figure 1.

The Beta-Liouville Dirichlet Compound Multinomial La-
tent Dirichlet Allocation model combines the Beta-Liouville
distribution and Dirichlet Compound Multinomial distribu-
tion to enhance the precision and adaptability of represent-
ing topic proportions within a document. The Beta-Liouville
distribution encompasses the Dirichlet distribution as a par-
ticular instance within its framework.

The generative process of BLDCMLDA is outlined in Al-
gorithm 1. The probabilistic assumptions of the proposed
model latent variables are described as follows:

θ ∼ Beta-Liouville Distribution(δ⃗)
z ∼ Multinomial(θ)
ϕ ∼ Dirichlet(β)
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Figure 1: Graphical Model of BLDCMLDA.

Parameter Inference
The BLDCMLDA model with its multiple hidden param-
eters, necessitates the computation of a posterior distribu-
tion that is analytically complex. To address this, we uti-
lize Gibbs sampling (Griffiths and Steyvers 2004), a Markov
chain Monte Carlo method that iteratively samples from the
conditional distributions of latent variables, aiding in ap-
proximating the posterior distribution and estimating model
parameters more efficiently. Our model includes unobserv-
able variables: δ⃗, β, ϕ, θ, and z. These are split into per-
document or per-word parameters (ϕ, θ, z) and hyperparam-
eters (δ⃗ and β). During the training phase with document
sets, the goal is to find the optimal values for these vari-
ables. This involves alternately optimizing the topic param-
eters (ϕ, θ, z) while keeping the hyperparameters (δ⃗ and β)
fixed, and then optimizing the hyperparameters based on the
refined topic parameters. In situations where hyperparame-
ters are constant, collapsed Gibbs sampling determines the
distribution of z in documents, enabling straightforward cal-
culation of ϕ and θ. Additionally, Monte Carlo expectation
maximization is used to find the values of δ⃗ and β that max-
imize the likelihood of the training documents, based on the
z samples.

Algorithm 1 BLDCMLDA Generative Model

for document d ∈ {1, 2, ..., D} do
Draw topic distribution θd ∼ BL(δ⃗)
for topic k ∈ {1, 2, ...,K} do

Draw Topic-Word distribution ϕkd ∼ Dir(βk)
end for
for word wdn in document d, n ∈ {1, ..., nd} do

Draw topic zdn ∼ θd
Draw word wdn ∼ ϕzdn,d

end for
end for

Following Heinrich et al. (Heinrich 2009), we developed a
Gibbs sampling method for efficiently estimating the hidden
parameters of the BLDCMLDA model. Initially, we break
down the complete likelihood of the model in the following

manner:
p(w, z|δ⃗, β..) = p(w|z, β)p(z|δ⃗) (1)

The initial probability represents the mean across all po-
tential distributions of ϕ.

p(w|z, β..) =
∫
ϕ

p(z|ϕ)p(ϕ|β)dϕ

=

∫
ϕ

p(ϕ|β)
∏
d

Nd∏
n=1

ϕwdnzdnddϕ

=

∫
ϕ

p(ϕ|β)
∏
dkt

(ϕtkd)
ntkddϕ

(2)

Expressing p(ϕ|β) as a Dirichlet distribution can be writ-
ten as:

p(w|z, β..) =
∫
ϕ

[∏
d,k

1

B(β.k)

∏
t

(ϕtkd)
βtk−1]× [

∏
d,k,t

(ϕtkd)
ntkd

]
dϕ

=
∏
d,k

∫
ϕ

∏
t

(ϕtkd)
|βtk−1+ntkddϕ

=
∏
d,k

B(n.kd + β.k)

B(β.k)

(3)
In the above equation, B(·) denotes the multivariate Beta

function. This function is applied in combination with the
count of occurrences of word t associated with topic k in
document d, which is indicated by ntkd.

The Beta-Liouville distribution defined in a K-
dimensional simplex is characterized by the parameter
vector θ = (θ1, . . . , θK), subject to the constraint∑K

k=1 θk = 1. Complemented by a hyperparameter vector
δ⃗ = (α1, α2, . . . , αK , α, γ), it offers more precise control
over the distribution shape and scale. The probability
density function is formulated as(Bouguila 2012b) (Fan and
Bouguila 2013):

p(θ|δ⃗) =
Γ
(∑K−1

k=1 αk

)
Γ(α+ γ)

Γ(α)Γ(γ)

K−1∏
k=1

θαk−1
k

Γ(αk)

×

(
K−1∑
k=1

θk

)α−
∑K−1

k=1 αk (
1−

K−1∑
k=1

θk

)γ−1

(4)

To infer z, we establish the Gibbs sampling function in
the following manner:

p(zi|z−i, w, δ⃗, β) =
p(w|z, β)p(z|δ⃗)

p(w|z−i, β)p(z−i|δ⃗)
(5)

Hyperparameter EM.
Once the topic parameters are established, the next step

involves optimizing the hyperparameters (δ, β) using a
Monte Carlo expectation-maximization (EM) technique.
This method entails an iterative process of adjusting δ and β
values to maximize the likelihood of the training documents.

Earlier studies often used fixed, uniform priors for topic
mixtures θ and vocabulary distributions ϕ, with constant pa-
rameter values. However, Wallach et al. (Wallach, Mimno,



and McCallum 2009) suggested that asymmetric Dirichlet
priors for topic probabilities improve model fitting. In BLD-
CMLDA, we adopt a novel approach by estimating the BL
distribution parameters δ to reveal topic correlations and
the parameters for word distributions in topics (β). Directly
maximizing the likelihood p(w|δ, β) for data w and hy-
perparameters δ and β is computationally challenging. We
address this by augmenting the likelihood to p(w, z|δ, β)
and applying the Monte Carlo Expectation Maximization
(MCEM) technique. This involves the Gibbs sampling step
for estimating topic assignments (E-step) and optimizing
p(w, z|δ, β) (M-step), detailed in Algorithm 2. For β, we
maximize the joint distribution based on the expected topic
assignments z = E(w|z, β) estimated through Gibbs sam-
pling.

Accordingly, we derive the optimal function as follows:

βnew
.k = argmax

β

∑
d,t

(log Γ(ntkd + βtk)− log Γ(βtk))

+
∑
d

[log Γ(
∑
t

βtk)− log Γ(
∑
t

ntkd + βtk)]

(6)
In this work, we adopt Minka Newton-based methodol-
ogy (Minka 2012) for fitting the Dirichlet Compound Multi-
nomial distribution. This process involves adjusting the
distribution based on K observed vectors, each of a V -
dimensional space.

Similarly, the parameters of the Beta-Liouville distribu-
tion (Bakhtiari and Bouguila 2016) (Ihou and Bouguila
2020) are determined by maximizing the joint probability
distribution:

δnew =argmax
δ

Γ(
∑K

k=1 ak)Γ(α+ γ)

Γ(α)Γ(γ)

×
∫ K∏

k=1

θmk+αk−1
k

Γ(αk)
(

K∑
k=1

θk)
α−

∑K
k=1 αk

× (1−
K∑

k=1

θk)
γ−1dθ

After estimating the optimal parameters δnew =
{αnew

1 , αnew
2 , ..., αnew

k , αnew, γnew} through Algorithm 2
and considering the word-topic observations (w, z), we can
compute the predictive distribution for a given document d,
denoted as θ̂d.
θ̂d,k = ∏K−1

i=1 (α+
∑K−1

k=1 mk, ̸d + i− 1)(γ +mK,̸d)∏K
i=1(

∑K
k=1(αk +mk, ̸d) + i− 1)

∏Nd

i=1(nk, ̸d + V β + i− 1)∏K
k=1(αk +mk, ̸d)

∏V
w=1(n

(w)
k, ̸d + β∏K

i=1(α+
∑K−1

k=1 mk, ̸d + γ +mK,̸d + i− 1)
(7)

for the topics k = 1...K and the documents d = 1...D.
The probability of words given topics, ϕ̂k, can be calcu-

lated using the following predictive distribution.

ϕ̂tkd =
n̄wizidi + β∗

wizi − 1∑
t n̄tzidi + β∗

tzi − 1
(8)

It is important to recognize that the likelihood of specific
topics in a document, denoted by θ̂d, varies based on the
document itself. Conversely, the likelihood of words within
a given topic, indicated by ϕ̂k, remains constant. Therefore,
when estimating the topic distribution of a new, unseen doc-
ument, we must account for the document unique topic prob-
abilities while maintaining consistent probabilities for words
about their topics.

Algorithm 2 Monte Carlo EM

1: Initialize the parameters δ, β and z
2: repeat
3: Run Gibbs Sampling
4: Choose a specific topic assignment for each word

using the Gibbs sampling equation
5: Choose δ and β that maximize complete Likelihood

p(w, z|δ, β)
6: until convergence δ, β
7: Choose topic assignment z∗ with highest probability
8: Set δ∗ = δ, β∗ = β return δ∗, β∗, z∗

Experimental Results
We conducted comprehensive experiments to assess the
BLDCMLDA model’s effectiveness in identifying coherent
topics and its predictive accuracy. This involved using three
public datasets: NIPS, Movie Review, and 20 Newsgroup.
The model was compared with GDCMLDA and DCMLDA,
which also account for burstiness, offering a relevant bench-
mark. A notable advantage of Beta-Liouville distributions,
as used in our model, is their fewer parameters compared to
generalized Dirichlet distributions.

Datasets
Our BLDCMLDA model was tested on three datasets, each
with its own set of unique features and challenges. The fol-
lowing is a brief overview of these datasets:

• The NIPS dataset consists of 1740 documents, mostly
comprised of papers presented at the NeurIPS conference
(formerly known as NIPS), which focuses on Neural In-
formation Processing Systems. These documents cover a
period from the first conference in 1987 up to the 2016
conference.

• The Movie Review dataset is commonly used in natural
language processing and sentiment analysis studies and
comprises textual film reviews. It includes a balanced col-
lection of 2000 reviews, with an equal split of 1000 nega-
tive and 1000 positive reviews.

• The 20 Newsgroups dataset comprises around 20,000
documents from newsgroups, evenly distributed across
20 distinct topics. Some newsgroups share close
relations, such as comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware, while others, like misc.forsale
and soc.religion.christian, are markedly different.



Table 1: Examples of topics learned by BLDCMLDA, GD-
CMLDA, and DCMLDA on the Movie Review dataset.

Horror Family Hollywood Relationships Fairy
Tale

Sci-Fi

BLDCMLDA

Killed life movie love story space

horror young scene wife disney planet

killer character audience man faith mars

genocide man director children magic earth

characters mother John friend lord space

scream woman role girl princess planet

bad love plot husband action alien

GDCMLDA

horror life hollywood relationship tale planet

dead home action love magic earth

murder mother role girl princess space

kill father star friend disney star

wild love movie live faith sci-fi

prison son story good legend world

movie woman work time lord fiction

DCMLDA

movie good watch great story space

horror character movie life life earth

killer young paul time children alien

scream lot director role man movie

characters written friend movie love special

sequel familiar time love disney planet

time year dead wife tale crew

We selected these datasets for their variety and complex-
ity, allowing a robust evaluation of BLDCMLDA. Our pre-
processing involved converting all texts to lowercase, tok-
enizing sentences, and eliminating stop words, punctuation,
and words that appear fewer than five times in the corpus.

Topic Coherence
It is crucial to generate topics that are semantically relevant
and clear, as they offer deeper insights into the underlying
structure of the dataset.

Table 1 displays six topics with associated keywords
from the BLDCMLDA, GDCMLDA, and DCMLDA mod-
els. Based on their keywords, BLDCMLDA makes it eas-
ier to understand these topics. However, GDCMLDA and
DCMLDA have unrelated words which make it harder to
understand the topics clearly, as they add complexity and
obscure the main theme.

Our model effectively pinpointed distinct themes, like the
’Horror’ topic with specific words (’genocide’, ’scream’,
’horror’), contrasting with the DCMLDA model’s more gen-

Table 2: Mean coherence scores of the DCMLDA, GD-
CMLDA, and BLDCMLDA methods.

Dataset DCMLDA GDCMLDA BLDCMLDA
NIPS 0.15 0.34 0.38
20NewsGroups 0.199 0.272 0.37
MovieReview 0.065 0.091 0.104

eral terms (’time’). Similarly, for the ’Relationships’ topic,
our model captured precise terms (’love’, ’wife’, ’man’,
’children’), reflecting family and emotional aspects, unlike
DCMLDA’s broader, less-focused approach. This highlights
our model’s superior ability in identifying and differentiat-
ing thematic content in movie reviews, proving its effective-
ness across various genres and subjects.

Our BLDCMLDA method’s interpretability was com-
pared to GDCMLDA and DCMLDA using the topic co-
herence measure (Newman et al. 2010)(Nikolenko, Koltcov,
and Koltsova 2017). This metric evaluates how closely the
top words in each topic are semantically related, reflecting
topic quality. The higher the coherence score, the greater the
relevance and connection between the top words. Based on
the top 10 words identified by each model, the overall co-
herence of each model was determined by averaging these
scores, facilitating standardized comparisons of topic qual-
ity.

The results in Table 2 illustrate BLDCMLDA’s superi-
ority over GDCMLDA and DCMLDA in mean coherence
score, demonstrating its enhanced capability to generate
more meaningful and semantically coherent topics by bet-
ter understanding semantic word links in the datasets.

The results highlight the substantial promise of the BLD-
CMLDA method in topic modeling applications. The im-
proved topic coherence indicates that our method can yield
more understandable and meaningful topics, a crucial bene-
fit for various use cases.

Perplexity
We also assessed all methods using the perplexity measure,
a standard metric in evaluating probabilistic topic models.
Perplexity evaluates how well a model predicts a sample,
with lower scores indicating better prediction capability. It
is calculated inversely to the log-likelihood of the test data.
A lower perplexity score suggests a more accurate model in
sample prediction.

Our experiments involved training models with varying
numbers of topics, specifically 10, 20, 30, 40, and 50. For
each configuration, we computed the perplexity score across
all topics to assess the performance of the model.

The results of our experiments are displayed in fig-
ure 2, showcasing the perplexity scores for DCMLDA, GD-
CMLDA, and BLDCMLDA across various topic numbers
and datasets. In the NIPS dataset, BLDCMLDA consis-
tently shows superiority over GDCMLDA and DCMLDA
by achieving lower perplexity scores, indicating a more ac-
curate data representation. This trend is also evident in the
20 NewsGroups and Movie Review datasets, where BLD-



CMLDA surpasses the other methods in predicting test doc-
ument words, as reflected by its lower perplexity scores.

In Figure 3, the learning curves of BLDCMLDA based
on the NIPS, 20 NewsGroups, and Movie Review datasets
are shown through perplexity scores. The graph illustrates a
consistent decrease in perplexity across all datasets, indicat-
ing improved learning with each iteration.

The results demonstrate the efficacy and dependability of
the BLDCMLDA method, evident in its consistently high
performance across various datasets. Notably, the reduced
perplexity scores achieved by BLDCMLDA underscore its
capability to effectively discern latent structures and patterns
in complex text data.

Topic Diversity
Topic Diversity is an important metric for assessing the qual-
ity of the inferred topics. It measures the degree to which in-
formation in the topics does not overlap, with a higher score
signifying a wider range of topics and, consequently, a more
comprehensive semantic coverage of the dataset.

The evaluation of Topic Diversity for the top 10 words in
each topic was conducted for BLDCMLDA, GDCMLDA,
and DCMLDA methods using these steps:

1. Identify the top 10 words for every topic.
2. Create a unique word set by uniting the top 10 words from

all topics.
3. Calculate Topic Diversity as the ratio of the count of

unique words to the total word count.
The experiment’s findings, detailed in Table 3, show

that the BLDCMLDA method outperformed both the GD-
CMLDA and the standard DCMLDA method in terms of
Topic Diversity. This indicates BLDCMLDA’s greater effec-
tiveness in representing textual data diversity, as it generated
topics encompassing a broader set of unique words, thereby
offering a more extensive coverage of the semantic space.

Table 3: Topic Diversity scores of DCMLDA, GDCMLDA,
and BLDCMLDA.

Dataset DCMLDA GDCMLDA BLDCMLDA
NIPS 0.52 0.63 0.67
20NewsGroups 0.72 0.78 0.80
MovieReview 0.38 0.52 0.54

Conclusion
In this work, we present the Beta-Liouville Dirichlet
Compound Multinomial Latent Dirichlet Allocation (BLD-
CMLDA) model. This new approach effectively addresses
topic burstiness in text data, demonstrating significant im-
provements in coherence, perplexity, and topic diversity,
thus capturing complex data structures and patterns more ac-
curately. Future developments aim to evolve BLDCMLDA
into a non-parametric model using the hierarchical Dirichlet
process (Teh et al. 2006) (Fan, Yang, and Bouguila 2022).
This will allow for automatic determination of the optimal
number of topics, facilitating greater adaptability to diverse
datasets without manual topic configuration.

(a) NIPS dataset

(b) 20 NewsGroups dataset

(c) Movie Review dataset

Figure 2: Perplexity scores for the DCMLDA, GDCMLDA,
and BLDCMLDA models across varying topic counts on the
three datasets.

Figure 3: Perplexity Score Trends Over 20 Iterations for
Three Different Datasets.
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